23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient biodegradation of feathers by a novel and stable metallo-keratinase production strain Stenotrophomonas sp. Yang-5 isolated from swan farming soil

, , , , &
Received 14 Dec 2023, Accepted 21 Mar 2024, Published online: 02 Apr 2024

References

  • Arasu VT, Sivakumar T, Ramasubramanian V, Nalini K, Kiruthiga R. 2009. The potential application of keratinase from Bacillus sp as plant growth promotors. J Pure Appl Microbio. 3:583–590.
  • Arokiyaraj S, Varghese R, Ahmed BA, Duraipandiyan V, Al-Dhabi NA. 2019. Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment. Saudi J Biol Sci. 26(2):378–381. doi: 10.1016/j.sjbs.2018.10.011.
  • Bagewadi ZK, Mulla SI, Ninnekar HZ. 2018. Response surface methodology based optimization of keratinase production from Trichoderma harzianum isolate HZN12 using chicken feather waste and its application in dehairing of hide. J Environ Chem Eng. 6(4):4828–4839. doi: 10.1016/j.jece.2018.07.007.
  • Barman NC, Zohora FT, Das KC, Mowla MG, Banu NA, Salimullah M, Hashem A. 2017. Production, partial optimization and characterization of keratinase enzyme by Arthrobacter sp NFH5 isolated from soil samples. Amb Express. 7(1):181. doi: 10.1186/s13568-017-0462-6.
  • Bennur T, Kumar AR, Zinjarde S, Javdekar V. 2014. Nocardiopsis species as potential sources of diverse and novel extracellular enzymes. Appl Microbiol Biotechnol. 98(22):9173–9185. doi: 10.1007/s00253-014-6111-y.
  • Bokveld A, Nnolim NE, Digban TO, Okoh AI, Nwodo UU. 2023. Chryseobacterium aquifrigidense keratinase liberated essential and nonessential amino acids from chicken feather degradation. Environ Technol. 44(3):293–303. doi: 10.1080/09593330.2021.1969597.
  • Callegaro K, Brandelli A, Daroit DJ. 2019. Beyond plucking: feathers bioprocessing into valuable protein hydrolysates. Waste Manag. 95:399–415. doi: 10.1016/j.wasman.2019.06.040.
  • Chellappan S, Jasmin C, Basheer SM, Kishore A, Elyas KK, Bhat SG, Chandrasekaran M. 2011. Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10. J Ind Microbiol Biotechnol. 38(6):743–752. doi: 10.1007/s10295-010-0914-3.
  • Chinta SK, Landage SM, Krati Y. 2013. Application of chicken feathers in technical textiles. Intern J Innov Res Sci Engng Technol. 2(10).
  • de Menezes CLA, Santos RdC, Santos MV, Boscolo M, da Silva R, Gomes E, da Silva RR. 2021. Industrial sustainability of microbial keratinases: production and potential applications. World J Microbiol Biotechnol. 37(5):86. doi: 10.1007/s11274-021-03052-z.
  • Deshan W, Tieying Z, Zhengwen L, Linyuan Z. 2014. Effects of lipid in feathers on degrading feathers by B. licheniformis CP-16. Feed Industry.
  • Fakhfakh N, Kanoun S, Manni L, Nasri M. 2009. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk. Can J Microbiol. 55(4):427–436. doi: 10.1139/W08-143.
  • Gafar AA, Khayat ME, Ahmad SA, Yasid NA, Shukor MY. 2020. Response surface methodology for the optimization of keratinase production in culture medium containing feathers by Bacillus sp. UPM-AAG1. Catalysts. 10(8):848. doi: 10.3390/catal10080848.
  • Govarthanan M, Selvankumar T, Selvam K, Sudhakar C, Aroulmoji V, Kamala-Kannan S. 2015. Response surface methodology based optimization of keratinase production from alkali-treated feather waste and horn waste using Bacillus sp MG-MASC-BT. J Ind Eng Chem. 27:25–30. doi: 10.1016/j.jiec.2014.12.022.
  • He Z, Sun R, Tang Z, Bu T, Wu Q, Li C, Chen H. 2018. Biodegradation of feather waste keratin by the keratin-degrading strain Bacillus subtilis 8. J Microbiol Biotechnol. 28(2):314–322. doi: 10.4014/jmb.1708.08077.
  • Hendrick Q, Nnolim NE, Nontongana N, Nwodo UU. 2022. Sphingobacterium multivorum HNFx produced thermotolerant and chemostable keratinase on chicken feathers. Biologia. 77(10):2921–2931. doi: 10.1007/s11756-022-01126-3.
  • Jeong J-H, Lee O-M, Jeon Y-D, Kim J-D, Lee N-R, Lee C-Y, Son H-J. 2010. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity. Process Biochem. 45(10):1738–1745. doi: 10.1016/j.procbio.2010.07.020.
  • Khumalo M, Sithole B, Tesfaye T. 2020. Valorisation of waste chicken feathers: optimisation of keratin extraction from waste chicken feathers by sodium bisulphite, sodium dodecyl sulphate and urea. J Environ Manage. 262:110329. doi: 10.1016/j.jenvman.2020.110329.
  • Kshetri P, Roy SS, Sharma SK, Singh TS, Ansari MA, Prakash N, Ngachan SV. 2019. Transforming chicken feather waste into feather protein hydrolysate using a newly isolated multifaceted Keratinolytic bacterium Chryseobacterium sediminis RCM-SSR-7. Waste Biomass Valor. 10(1):1–11. doi: 10.1007/s12649-017-0037-4.
  • Kumar R, Balaji S, Uma TS, Mandal AB, Sehgal PK. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal-a biowaste management. Appl Biochem Biotechnol. 160(1):30–39. doi: 10.1007/s12010-008-8452-4.
  • Li K, Li G, Peng S, Tan M. 2023. Effective biodegradation on chicken feather by the recombinant KerJY-23 Bacillus subtilis WB600: a synergistic process coupled by disulfide reductase and keratinase. Int J Biol Macromol. 253(Pt 5):127194. doi: 10.1016/j.ijbiomac.2023.127194.
  • Li Z-W, Liang S, Ke Y, Deng J-J, Zhang M-S, Lu D-L, Li J-Z, Luo X-C. 2020. The feather degradation mechanisms of a new Streptomyces sp. isolate SCUT-3. Commun Biol. 3(1):191. doi: 10.1038/s42003-020-0918-0.
  • Liang S, Deng J-J, Zhang M-S, Luo Z-Y, Lu W-J, Lu D-L, Mao H-H, Li Z-W, Li J-Z, Luo X-C. 2021. Promotion of feather waste recycling by enhancing the reducing power and keratinase activity of Streptomyces sp. SCUT-3. Green Chem. 23(14):5166–5178. doi: 10.1039/D1GC00677K.
  • Mazotto AM, Cedrola SML, de Souza EP, Couri S, Vermelho AB. 2022. Enhanced keratinase production by Bacillus subtilis amr using experimental optimization tools to obtain feather protein lysate for industrial applications. 3 Biotech. 12(4):90. doi: 10.1007/s13205-022-03153-y.
  • Mohamad N, Phang LY, Abd-Aziz S. 2017. Optimization of metallo-keratinase production by Pseudomonas sp LM19 as a potential enzyme for feather waste conversion. Biocatal Biotransfor. 35(1):41–50. doi: 10.1080/10242422.2017.1280031.
  • Mozhiarasi V, Natarajan TS. 2022. Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. Biomass Convers Biorefin. 1–24. doi: 10.1007/s13399-022-02352-0.
  • Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. 2020. Microbial Keratinase: next generation green catalyst and prospective applications. Front Microbiol. 11:580164. doi: 10.3389/fmicb.2020.580164.
  • Onifade AA, Al-Sane NA, Al-Musallam AA, Al-Zarban S. 1998. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technol. 66(1):1–11. doi: 10.1016/S0960-8524(98)00033-9.
  • Paul T, Das A, Mandal A, Halder SK, Jana A, Maity C, DasMohapatra PK, Pati BR, Mondal KC. 2014. An efficient cloth cleaning properties of a crude keratinase combined with detergent: towards industrial viewpoint. J Clean Prod. 66:672–684. doi: 10.1016/j.jclepro.2013.10.054.
  • Pei XD, Li F, Yue SY, Huang XN, Gao TT, Jiao DQ, et al. 2022. Production and characterization of novel thermo- and organic solvent-stable keratinase and aminopeptidase from Pseudomonas aeruginosa 4-3 for effective poultry feather degradation. Environ Sci Pollut R. 30:2480–2493.
  • Peng Z, Zhang J, Du GC, Chen J. 2019. Keratin waste recycling based on microbial degradation: mechanisms and prospects. ACS Sustainable Chem Eng. 7(11):9727–9736. doi: 10.1021/acssuschemeng.9b01527.
  • Potsangbam J. 2016. Optimization of keratinase production by amycolatopsis sp. strain MBRL 40 from a limestone habitat. Journal of Bioprocessing & Biotechniques. 6:282.
  • Prakash P, Jayalakshmi SK, Sreeramulu K. 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl Microbiol Biotechnol. 87(2):625–633. doi: 10.1007/s00253-010-2499-1.
  • Qiu J, Wilkens C, Barrett K, Meyer AS. 2020. Microbial enzymes catalyzing keratin degradation: classification, structure, function. Biotechnol Adv. 44:107607. doi: 10.1016/j.biotechadv.2020.107607.
  • Ramalingum N, Bhagwat P, Permaul K, Pillai S. 2022. Production, characterization, and application of Pseudomonas aeruginosa S-04 keratinase for feather utilization. Biomass Convers Bior. 2022:1–13. doi: 10.1007/s13399-022-03218-1
  • Reddy MR, Reddy KS, Chouhan YR, Bee H, Reddy G. 2017. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive. Bioresour Technol. 243:254–263. doi: 10.1016/j.biortech.2017.06.067.
  • Riffel A, Lucas F, Heeb P, Brandelli A. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch Microbiol. 179(4):258–265. doi: 10.1007/s00203-003-0525-8.
  • Srivastava B, Khatri M, Singh G, Arya SK. 2020. Microbial keratinases: an overview of biochemical characterization and its eco-friendly approach for industrial applications. J Clean Prod. 252:119847.
  • Su C, Gong J-S, Qin J, Li H, Li H, Xu Z-H, Shi J-S. 2020. The tale of a versatile enzyme: molecular insights into keratinase for its industrial dissemination. Biotechnol Adv. 45:107655. doi: 10.1016/j.biotechadv.2020.107655.
  • Sun ZT, Li XY, Liu KX, Chi XL, Liu LY. 2021. Optimization for production of a plant growth promoting agent from the degradation of chicken feather using keratinase producing novel isolatebacillus pumilus JYL. Waste Biomass Valor. 12(4):1943–1954. doi: 10.1007/s12649-020-01138-7.
  • Sypka M, Jodłowska I, Białkowska AM. 2021. Keratinases as versatile enzymatic tools for sustainable development. Biomolecules. 11(12):1900. doi: 10.3390/biom11121900.
  • Tamreihao K, Mukherjee S, Khunjamayum R, Devi LJ, Asem RS, Ningthoujam DS. 2019. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J Basic Microbiol. 59(1):4–13. doi: 10.1002/jobm.201800434.
  • Thankaswamy SR, Sundaramoorthy S, Palanivel S, Ramudu KN. 2018. Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J Clean Prod. 189:701–708. doi: 10.1016/j.jclepro.2018.04.095.
  • Tronina P, Bubel F. 2008. Production of organic fertilizer from poultry feather wastes excluding the composting process. Polish J Chem Technol. 10(2):33–36. doi: 10.2478/v10026-008-0025-3.
  • Wang SL, Hsu WT, Liang TW, Yen YH, Wang CL. 2008. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Bioresour Technol. 99(13):5679–5686. doi: 10.1016/j.biortech.2007.10.024.
  • Wang Z, Chen Y, Yan M, Li K, Okoye CO, Fang Z, Ni Z, Chen H. 2023. Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol. 107(4):1003–1017. doi: 10.1007/s00253-023-12360-3.
  • Yahaya RSR, Normi YM, Phang LY, Ahmad SA, Abdullah JO, Sabri S. 2021. Molecular strategies to increase keratinase production in heterologous expression systems for industrial applications. Appl Microbiol Biotechnol. 105(10):3955–3969. doi: 10.1007/s00253-021-11321-y.
  • Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, Dahalan FA, Shukor MY. 2016. Keratinase production and biodegradation of polluted secondary chicken feather wastes by a newly isolated multi heavy metal tolerant bacterium-Alcaligenes sp. AQ05-001. J Environ Manage. 183:182–195. doi: 10.1016/j.jenvman.2016.08.059.
  • Zhang R-X, Wu Z-W, Cui H-Y, Chai Y-N, Hua C-W, Wang P, Li L, Yang T-Y. 2022. Production of surfactant-stable keratinase from Bacillus cereus YQ15 and its application as detergent additive. BMC Biotechnol. 22(1):26. doi: 10.1186/s12896-022-00757-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.