Publication Cover
Nutritional Neuroscience
An International Journal on Nutrition, Diet and Nervous System
Latest Articles
102
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of maternal supplementation with DHA and/or egg yolk powder on monoamine homeostasis in the perinatal piglet brain

, , , &

References

  • Colombo J, Carlson SE, Cheatham CL, Fitzgerald-Gustafson KM, Kepler A, Doty T. Long-chain polyunsaturated fatty acid supplementation in infancy reduces heart rate and positively affects distribution of attention. Pediatr Res. 2011;70(4):406–10. doi:10.1203/PDR.0b013e31822a59f5.
  • Colombo J, Carlson SE, Cheatham CL, Shaddy DJ, Kerling EH, Thodosoff JM, et al. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr. 2013;98(2):403–12. doi:10.3945/ajcn.112.040766.
  • Gustafson KM, Liao K, Mathis NB, Shaddy DJ, Kerling EH, Christifano DN, et al. Prenatal docosahexaenoic acid supplementation has long-term effects on childhood behavioral and brain responses during performance on an inhibitory task* prenatal DHA and childhood inhibitory performance. Nutr Neurosci. 2022;25(1):80–90. doi:10.1080/1028415X.2020.1712535.
  • Wallace TC. A comprehensive review of eggs, choline, and lutein on cognition across the life-span. J Am Coll Nutr. 2018;37(4):269–85. doi:10.1080/07315724.2017.1423248.
  • Christifano DN, Chollet-Hinton L, Hoyer D, Schmidt A, Gustafson KM. Intake of eggs, choline, lutein, zeaxanthin, and DHA during pregnancy and their relationship to fetal neurodevelopment. Nutr Neurosci. 2023;26(8):749–55. doi:10.1080/1028415X.2022.2088944.
  • Olson CR, Mello CV. Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res. 2010;54(4):489–95. doi:10.1002/mnfr.200900246.
  • Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res. 2001;40(1–2):1–94. doi:10.1016/S0163-7827(00)00017-5.
  • Takeuchi T, Fukumoto Y, Harada E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav Brain Res. 2002;131(1–2):193–203.
  • Talamonti E, Sasso V, To H, Haslam RP, Napier JA, Ulfhake B, et al. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. Faseb J. 2020;34(2):2024–40. doi:10.1096/fj.201901890RR.
  • Akerele OA, Cheema SK. Maternal diet high in Omega-3 fatty acids upregulate genes involved in neurotrophin signalling in fetal brain during pregnancy in C57BL/6 mice. Neurochem Int. 2020;138:104778. doi:10.1016/j.neuint.2020.104778.
  • Bekdash RA. Neuroprotective effects of choline and other methyl donors. Nutrients. 2019;11:12. doi:10.3390/nu11122995.
  • Nimalaratne C, Wu JP. Hen egg as an antioxidant food commodity: a review. Nutrients. 2015;7(10):8274–93. doi:10.3390/nu7105394.
  • Pertile RAN, Brigden R, Raman V, Cui X, Du Z, Eyles D. Vitamin D: a potent regulator of dopaminergic neuron differentiation and function. J Neurochem. 2023;166(5):779–89. doi:10.1111/jnc.15829.
  • Mudd AT, Dilger RN. Early-life nutrition and neurodevelopment: use of the piglet as a translational model. Adv Nutr. 2017;8(1):92–104. doi:10.3945/an.116.013243.
  • Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci. 2014;15(4):217–32. doi:10.1038/nrn3707.
  • Holm IE, West MJ. Hippocampus of the domestic pig: a stereological study of subdivisional volumes and neuron numbers. Hippocampus. 1994;4(1):115–25. doi:10.1002/hipo.450040112.
  • Jelsing J, Hay-Schmidt A, Dyrby T, Hemmingsen R, Uylings HB, Pakkenberg B. The prefrontal cortex in the Gottingen minipig brain defined by neural projection criteria and cytoarchitecture. Brain Res Bull. 2006;70(4–6):322–36. doi:10.1016/j.brainresbull.2006.06.009.
  • Conrad MS, Dilger RN, Nickolls A, Johnson RW. Magnetic resonance imaging of the neonatal piglet brain. Pediatr Res. 2012;71(2):179–84. doi:10.1038/pr.2011.21.
  • Dickerson JW, Dobbing J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc R Soc Lond B Biol Sci. 1967;166(1005):384–95. doi:10.1098/rspb.1967.0002.
  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28(47):12176–82. doi:10.1523/JNEUROSCI.3479-08.2008.
  • Popova NK, Naumenko VS. Neuronal and behavioral plasticity: the role of serotonin and BDNF systems tandem. Expert Opin Ther Targets. 2019;23(3):227–39. doi:10.1080/14728222.2019.1572747.
  • Oostland M, van Hooft JA. The role of serotonin in cerebellar development. Neuroscience. 2013;248:201–12. doi:10.1016/j.neuroscience.2013.05.029.
  • Suri D, Teixeira CM, Cagliostro MK, Mahadevia D, Ansorge MS. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology. 2015;40(1):88–112. doi:10.1038/npp.2014.231.
  • Erzurumlu RS. Serotonin, birth, and thalamocortical wiring. Proc Natl Acad Sci USA. 2023;120(37):e2312515120. doi:10.1073/pnas.2312515120.
  • Saboory E, Ghasemi M, Mehranfard N. Norepinephrine, neurodevelopment and behavior. Neurochem Int. 2020;135:104706. doi:10.1016/j.neuint.2020.104706.
  • Nutrient Requirements of Swine. 11th rev. ed. Washington, DC: National Academies Press: National Research Council; 2012.
  • Coban A, Filipov NM. Dopaminergic toxicity associated with oral exposure to the herbicide atrazine in juvenile male C57BL/6 mice. J Neurochem. 2007;100(5):1177–87. doi:10.1111/j.1471-4159.2006.04294.x.
  • Krishna S, Lin Z, de La Serre CB, Wagner JJ, Harn DH, Pepples LM, et al. Time-dependent behavioral, neurochemical, and metabolic dysregulation in female C57BL/6 mice caused by chronic high-fat diet intake. Physiol Behav. 2016;157:196–208. doi:10.1016/j.physbeh.2016.02.007.
  • Felix B, Leger ME, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP. Stereotaxic atlas of the pig brain. Brain Res Bull. 1999;49(1–2):1–137. doi:10.1016/S0361-9230(99)00012-X.
  • Ahmed I, Reeves WD, Sun W, Dubrof ST, Zukaitis JG, West FD, et al. Nutritional supplement induced modulations in the functional connectivity of a porcine brain. Nutr Neurosci. 2024;27:1–12.
  • Walter DS, Eccleston D. Increase of noradrenaline metabolism following electrical stimulation of the Locus coeruleus in the rat. J Neurochem. 1973;21(2):281–9. doi:10.1111/j.1471-4159.1973.tb04249.x.
  • Sharma A, Couture J. A review of the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Ann Pharmacother. 2014;48(2):209–25. doi:10.1177/1060028013510699.
  • Cansev M, Ulus IH, Wang L, Maher TJ, Wurtman RJ. Restorative effects of uridine plus docosahexaenoic acid in a rat model of Parkinson's disease. Neurosci Res. 2008;62(3):206–9. doi:10.1016/j.neures.2008.07.005.
  • Shin SS, Dixon CE. Oral fish oil restores striatal dopamine release after traumatic brain injury. Neurosci Lett. 2011;496(3):168–71. doi:10.1016/j.neulet.2011.04.009.
  • Hase A, Jung SE, aan het Rot M. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol Biochem Behav. 2015;133:1–6. doi:10.1016/j.pbb.2015.03.008.
  • Kühn S, Düzel S, Colzato L, Norman K, Gallinat J, Brandmaier AM, et al. Food for thought: association between dietary tyrosine and cognitive performance in younger and older adults. Psychol Res-Psych Fo. 2019;83(6):1097–106.
  • Giorgi O, Demontis G, Porceddu ML, Mele S, Calderini G, Toffano G, Biggio G. Developmental and age-related-changes in D1-dopamine receptors and dopamine content in the rat striatum. Dev Brain Res. 1987;35(2):283–90. doi:10.1016/0165-3806(87)90053-8.
  • DeCapo M, Thompson JR, Dunn G, Sullivan EL. Perinatal nutrition and programmed risk for neuropsychiatric disorders: a focus on animal models. Biol Psychiatry. 2019;85(2):122–34. doi:10.1016/j.biopsych.2018.08.006.
  • Cortes-Albornoz MC, Garcia-Guaqueta DP, Velez-van-Meerbeke A, Talero-Gutierrez C. Maternal nutrition and neurodevelopment: a scoping review. Nutrients. 2021;13:10. doi:10.3390/nu13103530.
  • Chen V, Shelp GV, Schwartz JL, Aardema NDJ, Bunnell ML, Cho CE. Modification of the serotonergic systems and phenotypes by gestational micronutrients. J Endocrinol. 2023;257:2. doi:10.1530/JOE-22-0305.
  • Handelman GJ, Nightingale ZD, Lichtenstein AH, Schaefer EJ, Blumberg JB. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am J Clin Nutr. 1999;70(2):247–51. doi:10.1093/ajcn.70.2.247.
  • Tabassum S, Haider S, Ahmad S, Madiha S, Parveen T. Chronic choline supplementation improves cognitive and motor performance via modulating oxidative and neurochemical status in rats. Pharmacol Biochem Behav. 2017;159:90–9. doi:10.1016/j.pbb.2017.05.011.
  • Nimalaratne C, Lopes-Lutz D, Schieber A, Wu JP. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011;129(1):155–61. doi:10.1016/j.foodchem.2011.04.058.
  • Attia HN, Ahmed KA. Protective role of functional food in cognitive deficit in young and senile rats. Behav Pharmacol. 2020;31(1):81–96. doi:10.1097/FBP.0000000000000522.
  • Sharma A, Shweta O, Kumar AB. Antidepressant-like activity of lutein-zeaxanthin in mice: evidence for involvement of monoaminergic and opioid systems. Int J Pharm Technol. 2017;9(1):28551–66.
  • Sabir MS, Haussler MR, Mallick S, Kaneko I, Lucas DA, Haussler CA, et al. Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines. Genes Nutr. 2018;13:19. doi:10.1186/s12263-018-0605-7.
  • Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014;28(6):2398–413. doi:10.1096/fj.13-246546.
  • Patrick RP, Ames BN. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. Faseb J. 2015;29(6):2207–22. doi:10.1096/fj.14-268342.
  • Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, et al. Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005;19(11):2685–95. doi:10.1210/me.2005-0106.
  • Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res. 1999;56(6):565–70. doi:10.1002/(SICI)1097-4547(19990615)56:6<565::AID-JNR2>3.0.CO;2-H.
  • Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137(4):855–9. doi:10.1093/jn/137.4.855.
  • Salem Jr. N, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids. 2001;36(9):945–59. doi:10.1007/s11745-001-0805-6.
  • Bradbury J. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients. 2011;3(5):529–54. doi:10.3390/nu3050529.
  • Calder PC. The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol Nutr Food Res. 2012;56(7):1073–80. doi:10.1002/mnfr.201100710.
  • Heron DS, Shinitzky M, Hershkowitz M, Samuel D. Lipid fluidity markedly modulates the binding of serotonin to mouse-brain membranes. Proc Natl Acad Sci Biol. 1980;77(12):7463–7. doi:10.1073/pnas.77.12.7463.
  • Paila YD, Chattopadhyay A. Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem. 2010;51:439–66. doi:10.1007/978-90-481-8622-8_16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.