64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Braking Performance of Copper-Based Friction Materials Reinforced by AlCoCrFeNi High-Entropy Alloy

, , , &
Received 30 Aug 2023, Accepted 03 Apr 2024, Published online: 25 Apr 2024

References

  • Ma, X., Luan, C. H., Fan, S. W., Deng, J. L., Zhang, L. T., and Cheng, L. F. (2021), “Comparison of Braking Behaviors between Iron- and Copper-Based Powder Metallurgy Brake Pads That Used for C/C-SiC Disc,” Tribology International, 154, 106686. doi:10.1016/j.triboint.2020.106686
  • Xiao, J. K., Xiao, S. X., Chen, J., and Zhang, C. (2020), “Wear Mechanism of Cu-Based Brake Pad for High-Speed Train Braking at Speed of 380 km/h,” Tribology International, 150, 106357. doi:10.1016/j.triboint.2020.106357
  • Zhang, P., Zhang, L., Fu, K. X., Wu, P. F., Cao, J. W., Shijia, C. R., and Qu, X. H. (2019), “Fade Behaviour of Copper-Based Brake Pad During Cyclic Emergency Braking at High Speed and Overload Condition,” Wear, 428-429, pp 10–23. doi:10.1016/j.wear.2019.01.126
  • Xiao, Y. L., Zhang, Z. Y., Yao, P. P., Fan, K. Y., Zhou, H. B., Gong, T. M., Zhao, L., and Deng, M. W. (2017), “Mechanical and Tribological Behaviors of Copper Metal Matrix Composites for Brake Pads Used in High-Speed Trains,” Tribology International, 119, pp 585–592. doi:10.1016/j.triboint.2017.11.038
  • Peng, T., Yan, Q. Z., and Zhang, X. L. (2018), “Stability of Metal Matrix Composite Pads During High-Speed Braking,” Tribology Letters, 66, p 63. doi:10.1007/s11249-018-1014-1
  • Xiang, Z. Y., Qian, H. H., Mo, J. L., Chen, W., Tan, D. Q., and Zhou, Z. R. (2021), “Improving the Tribological Behavior of the Brake Interface of High-Speed Trains Via a Cantilever Beam Structure,” Tribology International, 155, 106783. doi:10.1016/j.triboint.2020.106783
  • Sinou, J. J., Loyer, A., Chiello, O., Mogenier, G., Lorang, X., Cocheteux, F., and Bellaj, S. (2013), “A Global Strategy Based on Experiments and Simulations for Squeal Prediction on Industrial Railway Brakes,” Journal of Sound and Vibration, 332, pp 5068–5085. doi:10.1016/j.jsv.2013.04.008
  • Mann, R., Magnier, V., Brunel, J. F., Brunel, F., Dufrénoy, P., and Henrion, M. (2017), “Relation Between Mechanical Behavior and Microstructure of a Sintered Material for Braking Application,” Wear, 386-387, pp 1–16. doi:10.1016/j.wear.2017.05.013
  • Xiao, Y. L., Yao, P. P., Zhou, H. B., Zhang, Z. Y., Gong, T. M., Zhao, L., Zuo, X. T., Deng, M. W., and Jin, Z. X. (2014), “Friction and Wear Behavior of Copper Matrix Composite for Spacecraft Rendezvous and Docking under Different Conditions,” Wear, 320, pp 127–134. doi:10.1016/j.wear.2014.09.005
  • Gyimah, G. K., Huang, P., and Chen, D. (2014), “Dry Sliding Wear Studies of Copper-Based Powder Metallurgy Brake Materials,” Journal of Tribology, 136, 041601. doi:10.1115/1.4027477
  • Zhang, P., Zhang, L., Wei, D. B., Wu, P. F., Cao, J. W., Shijia, C., Qu, X. H., and Fu, K. X. (2019), “Effect of Graphite Type on the Contact Plateaus and Friction Properties of Copper-Based Friction Material for High-Speed Railway Train,” Wear, 432-433, 202927. doi:10.1016/j.wear.2019.202927
  • Fan, Z. Y., Xiang, Z. Y., Tang, B., Chen, W., Qian, H. H., Mo, J. L., and Zhou, Z. R. (2021), “Effect of Surface Modification on the Tribological Properties of Friction Blocks in High‑Speed Train Brake Systems,” Tribology Letters, 69, p 27. doi:10.1007/s11249-021-01402-4
  • Xiong, X., Chen, J., Yao, P. P., Li, S. P., and Huang, B. Y. (2007), “Friction and Wear Behaviors and Mechanisms of Fe and SiO2 in Cu-Based P/M Friction Materials,” Wear, 262, pp 1182–1186. doi:10.1016/j.wear.2006.11.001
  • Cui, G. J., Ren, J., and Lu, Z. X. (2017), “The Microstructure and Wear Characteristics of Cu-Fe Matrix Friction Material with Addition of SiC,” Tribology Letters, 65, p 108. doi:10.1007/s11249-017-0890-0
  • Zhang, P., Zhang, L., Fu, K. X., Wu, P. F., Cao, J. W., Shijia, C. R., and Qu, X. H. (2019), “The Effect of Al2O3 Fiber Additive on Braking Performance of Copper-Based Brake Pads Utilized in High-Speed Railway Train,” Tribology International, 135, pp 444–456. doi:10.1016/j.triboint.2019.03.034
  • Peng, T., Yan, Q., Li, G., and Zhang, X. (2018), “The Influence of Cu/Fe Ratio on the Tribological Behavior of Brake Friction Materials,” Tribology Letters, 66, p 18. doi:10.1007/s11249-017-0961-2
  • Zhou, H. B., Yao, P. P., Xiao, Y. L., Fan, K. Y., Zhang, Z. Y., Gong, T. M., Zhao, L., Deng, M. W., Liu, C., and Ling, P. (2019), “Friction and Wear Maps of Copper Metal Matrix Composites with Different Iron Volume Content,” Tribology International, 132, pp 199–210. doi:10.1016/j.triboint.2018.11.027
  • Gong, T. M., Yao, P. P., Xiong, X., Zhou, H. B., Zhang, Z. Y., Xiao, Y. L., Zhao, L., and Deng, M. W. (2019), “Microstructure and Tribological Behavior of Interfaces in Cu-SiO2 and Cu-Cr Metal Matrix Composites,” Journal of Alloys and Compounds, 786, pp 975–985. doi:10.1016/j.jallcom.2019.01.255
  • Wang, Y., Yan, Q. Z., Zhang, F. F., Ge, C. C., Zhang, X. L., and Zhao, H. Q. (2013), “Sintering Behavior of Cr in Different Atmospheres and Its Effect on the Microstructure and Properties of Copper-Based Composite Materials,” International Journal of Minerals, Metallurgy, and Materials, 20, pp 1208–1213. doi:10.1007/s12613-013-0856-7
  • Fan, J. L., Zhang, C., Wu, S., Jia, D. J., Sun, L. L., Li, Y. W., and Liu, J. X. (2018), “Effect of Cr-Fe on Friction and Wear Properties of Cu-Based Friction Material,” Materials Science and Technology, 34, pp 869–875. doi:10.1080/02670836.2017.1412007
  • Yang, T., Zhao, Y. L., Tong, Y., Jiao, Z. B., Wei, J., Cai, J. X., Han, X. D., Chen, D., Hu, A., Kai, J. J., Lu, K., Liu, Y., and Liu, C. T. (2018), “Multicomponent Intermetallic Nanoparticles and Superb Mechanical Behaviors of Complex Alloys,” Science, 362, pp 933–937. doi:10.1126/science.aas8815
  • Xiao, J. K., Tan, H., Chen, J., Martini, A., and Zhang, C. (2020), “Effect of Carbon Content on Microstructure, Hardness and Wear Resistance of CoCrFeMnNiCx High-Entropy Alloys,” Journal of Alloys and Compounds, 847, 156533. doi:10.1016/j.jallcom.2020.156533
  • Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L., and Birbilis, N. (2017), “Corrosion of High Entropy Alloys,” npj Materials Degradation, 1, p 15. doi:10.1038/s41529-017-0009-y
  • Lu, J., Li, L., Zhang, H., Chen, Y., Luo, L. R., Zhao, X. F., Guo, F. W., and Xiao, P. (2021), “Oxidation Behavior of Gas-atomized AlCoCrFeNi High-Entropy Alloy Powder at 900-1100 °C,” Corrosion Science, 181, p 109257. doi:10.1016/j.corsci.2021.109257
  • Wang, Z. W., Yuan, Y. B., Zheng, R. X., Ameyama, K., and Ma, C. L. (2014), “Microstructures and Mechanical Properties of Extruded 2024 Aluminum Alloy Reinforced by FeNiCrCoAl3 Particles,” Transactions of Nonferrous Metals Society of China, 24, pp 2366–2373. doi:10.1016/S1003-6326(14)63358-6
  • Tan, Z., Wang, L., Xue, Y. F., Zhang, P., Cao, T. Q., and Cheng, X. W. (2016), “High-Entropy Alloy Particle Reinforced Al-based Amorphous Alloy Composite with Ultrahigh Strength Prepared by Spark Plasma Sintering,” Materials & Design, 109, pp 219–226. doi:10.1016/j.matdes.2016.07.086
  • Chen, J., Niu, P. Y., Wei, T., Hao, L., Liu, Y. Z., Wang, X. H., and Peng, Y. L. (2015), “Fabrication and Mechanical Properties of AlCoNiCrFe High-Entropy Alloy Particle Reinforced Cu Matrix Composites,” Journal of Alloys and Compounds, 649, pp 630–634. doi:10.1016/j.jallcom.2015.07.125
  • TJ/CL 307–2019 (2019), “Technical Specification of Brake Pads of EMUs.” Issued by China Railway Rolling Stock Corporation (in Chinese).
  • Xiao, J. K., Li, T. T., Wu, Y. Q., Chen, J., and Zhang, C. (2021), “Microstructure and Tribological Properties of Plasma-Sprayed CoCrFeNi-Based High-Entropy Alloy Coatings under Dry and Oil-Lubricated Sliding Conditions,” Journal of Thermal Spray Technology, 30, pp 926–936. doi:10.1007/s11666-021-01175-1
  • Xiao, J. K., Zhang, W., Liu, L. M., Zhang, L., and Zhang, C. (2017), “Tribological Behavior of Copper-Molybdenum Disulfide Composites,” Wear, 384-385, pp 61–71. doi:10.1016/j.wear.2017.05.006
  • Li, Z., Xiao, P., Zhang, B. G., Li, Y., and Lu, Y. H. (2015), “Preparation and Tribological Properties of C/C-SiC Brake Composites Modified by in Situ Grown Carbon Nanofibers,” Ceramics International, 41, pp 11733–11740. doi:10.1016/j.ceramint.2015.05.139
  • Peng, T., Yan, Q. Z., Zhang, X. L., and Zhuang, Y. (2020), “Role of Titanium Carbide and Alumina on the Friction Increment for Cu-Based Metallic Brake Pads under Different Initial Braking Speeds,” Friction, 9, pp 1543–1557. doi:10.1007/s40544-020-0439-3
  • Zhang, P., Zhang, L., Fu, K. X., Cao, J. W., Shijia, C., and Qu, X. H. (2018), “Effects of Different forms of Fe Powder Additives on the Simulated Braking Performance of Cu-Based Friction Materials for High-Speed Railway Trains,” Wear, 414-415, pp 317–326. doi:10.1016/j.wear.2018.09.006
  • Zhou, H. B., Yao, P. P., Xiao, Y. L., Liu, X. B., Fan, K. Y., Gong, T. M., Zhao, L., Deng, M. W., and Zhang, Z. Y. (2023), “Influence of Ferrochromium Type on Micro and Macro Tribology Behavior of Copper Metal Matrix Composites,” Tribology International, 184, 108409. doi:10.1016/j.triboint.2023.108409
  • Zawisch, M., Makowski, S., Kuczyk, M., and Weihnacht, V. (2022), “Comparison of Fracture Properties of Different Amorphous Carbon Coatings Using the Scratch Test and Indentation Failure Method,” Surface and Coatings Technology, 435, 128247. doi:10.1016/j.surfcoat.2022.128247
  • Yamada, Y., Murashima, M., Umehara, N., Tokoroyama, T., Lee, W. Y., Takamatsu, H., Tanaka, Y., and Utsumi, Y. (2022), “Effect of Fracture Properties and Surface Morphology on Wear of DLC Coatings at Severe Contact Condition,” Tribology International, 169, 107486. doi:10.1016/j.triboint.2022.107486
  • Nastasi, M., Kodali, P., Walter, K. C., Embury, J. D., Raj, R., and Nakamura, Y. (1999), “Fracture Toughness of Diamondlike Carbon Coatings,” Journal of Materials Research, 14, pp 2173–2180. doi:10.1557/JMR.1999.0293
  • Mustafa, M. M. B., Umehara, N., Tokoroyama, T., Murashima, M., Shibata, A., Utsumi, Y., and Moriguchi, H. (2020), “Effect of Mesh Structure of Tetrahedral Amorphous Carbon (ta-C) Coating on Friction and Wear Properties under Base-Oil Lubrication Condition,” Tribology International, 147, 105557. doi:10.1016/j.triboint.2019.01.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.