122
Views
0
CrossRef citations to date
0
Altmetric
Report

The Haptic Moving Room

, , , , &

References

  • Auvray, M., Hanneton, S., & O’Regan, J. K. (2007). Learning to perceive with a visuo-auditory substitution system: Localization and object recognition with ‘The Voice’. Perception, 36(3), 416–430. https://doi.org/10.1068/p5631
  • Bach-y-Rita, P., Collins, C. C., Saunders, F. A., White, B., & Scadden, L. (1969). Vision substitution by tactile image projection. Nature, 221(5184), 963–964. https://doi.org/10.1038/221963a0
  • Bao, T., Carender, W. J., Kinnaird, C., Barone, V. J., Peethambaran, G., Whitney, S. L., Kabeto, M., Seidler, R. D., & Sienko, K. H. (2018). Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: A randomized preliminary study. Journal of Neuroengineering and Rehabilitation, 15(1), 5. https://doi.org/10.1186/s12984-017-0339-6
  • Bardy, B. G., Marin, L., Stoffregen, T. A., & Bootsma, R. J. (1999). Postural coordination modes considered as emergent phenomena. Journal of Experimental Psychology: Human Perception and Performance, 25(5), 1284–1301. https://doi.org/10.1037//0096-1523.25.5.1284
  • Bardy, B. G., Oullier, O., Bootsma, R. J., & Stoffregen, T. A. (2002). Dynamics of human postural transitions. Journal of Experimental Psychology. Human Perception and Performance, 28(3), 499–514. https://doi.org/10.1037/0096-1523.28.3.499
  • Bechly, K. E., Carender, W. J., Myles, J. D., & Sienko, K. H. (2013). Determining the preferred modality for real-time biofeedback during balance training. Gait & Posture, 37(3), 391–396. https://doi.org/10.1016/j.gaitpost.2012.08.007
  • Bermejo, F., Di Paolo, E. A., Hüg, M. X., & Arias, C. (2015). Sensorimotor strategies for recognizing geometrical shapes: A comparative study with different sensory substitution devices. Frontiers in Psychology, 6, 679. https://doi.org/10.3389/fpsyg.2015.00679
  • Cancar, L., Díaz, A., Barrientos, A., Travieso, D., & Jacobs, D. M. (2013). Tactile-sight: A sensory substitution device based on distance-related vibrotactile flow. International Journal of Advanced Robotic Systems, 10(6), 272. https://doi.org/10.5772/56235
  • Chander, H., Kodithuwakku Arachchige, S. N., Hill, C. M., Turner, A. J., Deb, S., Shojaei, A., Hudson, C., Knight, A. C., & Carruth, D. W. (2019). Virtual-reality-induced visual perturbations impact postural control system behavior. Behavioral Sciences (Basel, Switzerland), 9(11), 113. https://doi.org/10.3390/bs9110113
  • Chander, H., Kodithuwakku Arachchige, S. N., Turner, A. J., & Knight, A. C. (2020). Is it me or the room moving? Recreating the classical “moving room” experiment with virtual reality for postural control adaptation. Adaptive Behavior, 30(2), 199–204. https://doi.org/10.1177/1059712320971372
  • Chebat, D. R., Rainville, C., Kupers, R., & Ptito, M. (2007). Tactile-’visual’ acuity of the tongue in early blind individuals. Neuroreport, 18(18), 1901–1904. https://doi.org/10.1097/WNR.0b013e3282f2a63
  • Chebat, D. R., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Navigation with a sensory substitution device in congenitally blind individuals. Neuroreport, 22(7), 342–347. https://doi.org/10.1097/WNR.0b013e3283462def
  • de Paz, C., Ibáñez-Gijón, J., Travieso, D., & Jacobs, D. M. (2023). Grasping objects with a sensory substitution glove. International Journal of Human-Computer Studies, 170, 102963. https://doi.org/10.1016/j.ijhcs.2022.102963
  • de Paz, C., Travieso, D., Ibáñez-Gijón, J., Bravo, M., Lobo, L., & Jacobs, D. M. (2019). Sensory substitution: The affordance of passability, body-scaled perception, and exploratory movements. PloS One, 14(3), e0213342. https://doi.org/10.1371/journal.pone.0213342
  • Eagleman, D. M., & Perrotta, M. V. (2023). The future of sensory substitution, addition, and expansion via haptic devices. Frontiers in Human Neuroscience, 16, 1055546. https://doi.org/10.3389/fnhum.2022.1055546
  • Favela, L. H., Riley, M. A., Shockley, K., & Chemero, A. (2018). Perceptually equivalent judgments made visually and via haptic sensory-substitution devices. Ecological Psychology, 30(4), 326–345. https://doi.org/10.1080/10407413.2018.1473712
  • Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
  • Goodworth, A. D., Wall, C., & Peterka, R. J. (2009). Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 17(4), 397–408. https://doi.org/10.1109/TNSRE.2009.2023309
  • Goodworth, A. D., Wall, C., & Peterka, R. J. (2011). A balance control model predicts how vestibular loss subjects benefit from a vibrotactile balance prosthesis [Paper presentation]. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1306–1309). IEEE. https://doi.org/10.1109/IEMBS.2011.6090307
  • Guarniero, G. (1974). Experience of tactile vision. Perception, 3(1), 101–104. https://doi.org/10.1068/p030101
  • Guarniero, G. (1977). Tactile vision: A personal view. Journal of Visual Impairment & Blindness, 71(3), 125–130. https://doi.org/10.1177/0145482X7707100308
  • Horak, F. B., Nashner, L. M., & Diener, H. C. (1990). Postural strategies associated with somatosensory and vestibular loss. Experimental Brain Research, 82(1), 167–177. https://doi.org/10.1007/BF00230848
  • Ibáñez-Gijón, J., Glez-de-Rivera, G., de Paz, C., Travieso, D., & Jacobs, D. (2024). SSDMOVE: Usability and effectiveness of a wearable sensory substitution device to assist the locomotion of visually impaired individuals. [Manuscript in Preparation].
  • Jeka, J. J., Easton, R. D., Bentzen, B. L., & Lackner, J. R. (1996). Haptic cues for orientation and postural control. Perception & Psychophysics, 58(3), 409–423. https://doi.org/10.3758/BF03206817
  • Jeka, J., Oie, K., Schöner, G., Dijkstra, T., & Henson, E. (1998). Position and velocity coupling of postural sway to somatosensory drive. Journal of Neurophysiology, 79(4), 1661–1674. https://doi.org/10.1152/jn.1998.79.4.1661
  • Jeka, J. J., Schöner, G., Dijkstra, T., Ribeiro, P., & Lackner, J. R. (1997). Coupling of fingertip somatosensory information to head and body sway. Experimental Brain Research, 113(3), 475–483. https://doi.org/10.1007/PL00005600
  • Kaczmarek, K. A., & Haase, S. J. (2003). Pattern identification and perceived stimulus quality as a function of stimulation waveform on a fingertip-scanned electrotactile display. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 11(1), 9–16. https://doi.org/10.1109/TNSRE.2003.810421
  • Kilian, J., Neugebauer, A., Scherffig, L., & Wahl, S. (2022). The unfolding space glove: A wearable spatio-visual to haptic sensory substitution device for blind people. Sensors (Basel, Switzerland), 22(5), 1859. https://doi.org/10.3390/s22051859
  • Kolarik, A. J., Scarfe, A. C., Moore, B. C., & Pardhan, S. (2017). Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation. PloS One, 12(4), e0175750. https://doi.org/10.1371/journal.pone.0175750
  • Kolarik, A. J., Timmis, M. A., Cirstea, S., & Pardhan, S. (2014). Sensory substitution information informs locomotor adjustments when walking through apertures. Experimental Brain Research, 232(3), 975–984. https://doi.org/10.1007/s00221-013-3809-5
  • Lee, D. N., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception & Psychophysics, 15(3), 529–532. https://doi.org/10.3758/BF03199297
  • Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1(2), 87–95.
  • Lenay, C., Gapenne, O., Hanneton, S., Marque, C., & Genouëlle, C. (2003). Sensory substitution: Limits and perspectives. In Y. Hatwell, A. Streri, & E. Gentaz (Eds.), Touching for knowing: Cognitive psychology of haptic manual perception (pp. 275–292). John Benjamins Publishing. https://doi.org/10.1075/aicr.53.22len
  • Lenay, C., & Steiner, P. (2010). Beyond the internalism/externalism debate: The constitution of the space of perception. Consciousness and Cognition, 19(4), 938–952. https://doi.org/10.1016/j.concog.2010.06.011
  • Lobo, L., Nordbeck, P. C., Raja, V., Chemero, A., Riley, M. A., Jacobs, D. M., & Travieso, D. (2019). Route selection and obstacle avoidance with a short-range haptic sensory substitution device. International Journal of Human-Computer Studies, 132, 25–33. https://doi.org/10.1037/xap0000154
  • Lobo, L., Travieso, D., Jacobs, D. M., Rodger, M., & Craig, C. M. (2018). Sensory substitution: Using a vibrotactile device to orient and walk to targets. Journal of Experimental Psychology Applied, 24(1), 108–124. https://doi.org/10.1037/xap0000154
  • Oullier, O., Bardy, B. G., Stoffregen, T. A., & Bootsma, R. J. (2002). Postural coordination in looking and tracking tasks. Human Movement Science, 21(2), 147–167. https://doi.org/10.1016/S0167-9457(02)00093-3
  • Peterka, R. J., Wall, C., & Kentala, E. (2006). Determining the effectiveness of a vibrotactile balance prosthesis. Journal of Vestibular Research, 16(1–2), 45–56. https://doi.org/10.3233/VES-2006-161-205
  • Riley, M. A., Stoffregen, T. A., Grocki, M. J., & Turvey, M. T. (1999). Postural stabilization for the control of touching. Human Movement Science, 18(6), 795–817. https://doi.org/10.1016/S0167-9457(99)00041-X
  • Sampaio, E., Maris, S., & Bach-y-Rita, P. (2001). Brain plasticity: ‘Visual’ acuity of blind persons via the tongue. Brain Research, 908(2), 204–207. https://doi.org/10.1016/S0006-8993(01)02667-1
  • Satpute, S. A., Canady, J. R., Klatzky, R. L., & Stetten, G. D. (2020). FingerSight: A vibrotactile wearable ring for assistance with locating and reaching objects in peripersonal space. IEEE Transactions on Haptics, 13(2), 325–333. https://doi.org/10.1109/TOH.2019.2945561
  • Schöner, G. (1991). Dynamic theory of action-perception patterns: The “moving room” paradigm. Biological Cybernetics, 64(6), 455–462. https://doi.org/10.1007/BF00202609
  • Siegle, J. H., & Warren, W. H. (2010). Distal attribution and distance perception in sensory substitution. Perception, 39(2), 208–223. https://doi.org/10.1068/p6366
  • Sienko, K. H., Balkwill, M. D., Oddsson, L. I., & Wall, C. (2013). The effect of vibrotactile feedback on postural sway during locomotor activities. Journal of Neuroengineering and Rehabilitation, 10(1), 93. https://doi.org/10.1186/1743-0003-10-93
  • Sienko, K. H., Seidler, R. D., Carender, W. J., Goodworth, A. D., Whitney, S. L., & Peterka, R. J. (2018). Potential mechanisms of sensory augmentation systems on human balance control. Frontiers in Neurology, 9, 944. https://doi.org/10.3389/fneur.2018.00944
  • Stoffregen, T. A., Ito, K., Hove, P., Yank, J. R., & Bardy, B. G. (2010). The postural responses to a moving environment of adults who are blind. Journal of Visual Impairment & Blindness, 104(2), 73–83. https://doi.org/10.1177/0145482X1010400203
  • Stoffregen, T. A., Villard, S., Kim, C., Ito, K., & Bardy, B. G. (2009). Coupling of head and body movement with motion of the audible environment. Journal of Experimental Psychology. Human Perception and Performance, 35(4), 1221–1231. https://doi.org/10.1037/a0014251
  • van Asten, W. N. J. C., Gielen, C. C. A. M., & van der Gon, J. J. (1988). Postural adjustments induced by simulated motion of differently structured environments. Experimental Brain Research, 73(2), 371–383. https://doi.org/10.1007/BF00248230
  • Wulf, G. (2013). Attentional focus and motor learning: A review of 15 years. International Review of Sport and Exercise Psychology, 6(1), 77–104. https://doi.org/10.1080/1750984X.2012.723728
  • Wulf, G., Höß, M., & Prinz, W. (1998). Instructions for motor learning: Differential effects of internal versus external focus of attention. Journal of Motor Behavior, 30(2), 169–179. https://doi.org/10.1080/00222899809601334

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.