46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pulsating magnetohydrodynamic hybrid nanofluid flow with thermal radiation, viscous dissipation, and entropy generation: Application to bio-nanomedicine

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 17 Feb 2024, Accepted 19 Apr 2024, Published online: 09 May 2024

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, pp. 99–105, 1995.
  • L. A. Lund, Z. Omar, I. Khan and E. S. M. Sherif, “Dual solutions and stability analysis of a hybrid nanofluid over a stretching/shrinking sheet executing mhd flow,” Symmetry (Basel), vol. 12, no. 2, pp. 276, 2020. DOI: 10.3390/sym12020276.
  • S. P. A. Devi and S. S. U. Devi, “Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction,” Int. J. Nonlinear Sci. Numer. Simul., vol. 17, no. 5, pp. 249–257, 2016. DOI: 10.1515/ijnsns-2016-0037.
  • Y. Ma, R. Mohebbi, M. M. Rashidi and Z. Yang, “MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers,” Int. J. Heat Mass Transf., vol. 137, pp. 714–726, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.169.
  • M. Alizadeh, A. S. Dogonchi and D. D. Ganji, “Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field,” Case Stud. Therm. Eng., vol. 12, pp. 319–332, 2018. DOI: https://doi.org/10.1016/j.csite.2018.05.002.
  • K. Goyal and S. Srinivas, “Pulsatile flow of Casson hybrid nanofluid between ternary-hybrid nanofluid and nanofluid in an inclined channel with temperature-dependent viscosity,” Numerical Heat Transfer, Part A: Appl., vol. 85, pp. 1–30, 2024. DOI: 10.1080/10407782.2024.2314735.
  • I. Shahzadi and S. Bilal, “A significant role of permeability on blood flow for hybrid nanofluid through bifurcated stenosed artery: drug delivery application,” Comput. Methods Programs Biomed, vol. 187, pp. 105248, 2020. DOI: 10.1016/j.cmpb.2019.105248.
  • S. Dey, S. Mukhopadhyay and K. Vajravelu, “Effects of Stefan blowing on mixed convection heat transfer in a nanofluid flow with Thompson and Troian slip,” Numerical Heat Transfer, A: Appl., vol. 84, pp. 1–20, 2023. DOI: 10.1080/10407782.2023.2261626.
  • S. Hussain and B. P. Geridonmez, “Mixed bioconvection flow of Ag- MgO/water in the presence of oxytactic bacteria and inclined periodic magnetic field,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106015, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106015.
  • R. Manchi and R. Ponalagusamy, “Pulsatile flow of EMHD micropolar hybrid nanofluid in a porous bifurcated artery with an overlapping stenosis in the presence of body acceleration and Joule heating,” Braz. J. Phys., vol. 52, no. 2, pp. 1–25, 2022. DOI: 10.1007/s13538-022-01061-3.
  • S. Shaiq, E. N. Maraj and Z. Iqbal, “A comparative analysis of shape fac- tor and thermophysical properties of electrically conducting nanofluids towards stretching cylinder,” Chaos, Solitons Fractals, vol. 118, pp. 290–299, 2019. DOI: 10.1016/j.chaos.2018.11.032.
  • A. Mishra and H. Upreti, “A comparative study of Ag–MgO/water and Fe3O4–CoFe3O4/EG–water hybrid nanofluid flow over a curved surface with chemical reaction using buongiorno model,” Partial Differ. Equations Appl. Math., vol. 5, pp. 100322, 2022. DOI: 10.1016/j.padiff.2022.100322.
  • F. Redouane, et al., “Heat flow saturate of Ag/MgO-water hybrid nanofluid in heated trigonal enclosure with rotate cylindrical cavity by using Galerkin finite element,” Sci. Rep., vol. 12, no. 1, pp. 2302, 2022. DOI: 10.1038/s41598-022-06134-6.
  • A. Eringen, “Theory of micropolar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, 1966. DOI: 10.1512/iumj.1967.16.16001.
  • A. C. Eringen, “Theory of thermo-microstretch fluids and bubbly liq- uids,” Int. J. Eng. Sci., vol. 28, no. 2, pp. 133–143, 1990. DOI: 10.1016/0020-7225(90)90063-O.
  • P. Bitla and T. K. V. Iyengar, “Pulsating flow of an incompressible microp- olar fluid between permeable beds with an inclined uniform magnetic field,” Eur. J. Mech. B/Fluids, vol. 48, pp. 174–182, 2014. DOI: 10.1016/j.euromechflu.2014.06.002.
  • B. Vasu, A. Dubey, O. A. B’eg and R. S. R. Gorla, “Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: non-newtonian pharmacodynamic simulation,” Comput. Biol. Med., vol. 126, pp. 104025, 2020. DOI: 10.1016/j.compbiomed.2020.104025.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop and O. K. Nusier, “Convective heat transfer of ferrofluid in a lid-driven cavity with a heat-conducting solid backward step under the effect of a variable magnetic field,” Numerical Heat Transfer, A: Appl., vol. 72, no. 1, pp. 54–67, 2017. DOI: 10.1080/10407782.2017.1353377.
  • X. Si, L. Zheng, P. Lin, X. Zhang and Y. Zhang, “Flow and heat transfer of a micropolar fluid in a porous channel with expanding or contracting walls,” Int. Commun. Heat Mass Transf., vol. 67, pp. 885–895, 2013. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.012.
  • S. S. Ghadikolaei, K. Hosseinzadeh, M. Hatami, D. D. Ganji and M. Armin, “Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear ther- mal radiation,” J. Mol. Liq., vol. 263, pp. 10–21, 2018. DOI: 10.1016/j.molliq.2018.04.141.
  • E. N. Thabet, Z. Khan, A. M. Abd-Alla and F. S. Bayones, “Thermal enhancement, thermophoretic diffusion, and Brownian motion impacts on MHD micropolar nanofluid over an inclined surface: numerical simulation,” Numerical Heat Transfer, Part A: Appl., vol. 83, pp. 1–20, 2023. DOI: 10.1080/10407782.2023.2276319.
  • A. Ahmed and S. Nadeem, “Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis,” Results Phys., vol. 7, pp. 4130–4139, 2017. DOI: 10.1016/j.rinp.2017.10.032.
  • M. Hatami, J. Hatami and D. D. Ganji, “Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-newtonian nanofluid in a hollow porous vessel,” Computer Methods Programs Biomed., vol. 113, no. 2, pp. 632–641, 2014. DOI: 10.1016/j.cmpb.2013.11.001.
  • A. A. Avramenko, I. V. Shevchuk and A. I. Tyrinov, “Convective instability of nanofluids in vertical circular porous microchannels,” Chaos, Solitons Fractals, vol. 149, pp. 111093, 2021. DOI: 10.1016/j.chaos.2021.111093.
  • E. O. Fatunmbi and A. Adeniyan, “Nonlinear thermal radiation and entropy generation on steady flow of magneto-micropolar fluid passing a stretch- able sheet with variable properties,” Results Eng., vol. 6, pp. 100142, 2020. DOI: https://doi.org/10.1016/j.rineng.2020.100142.
  • A. Dawar, Z. Shah, A. Tassaddiq, S. Islam and P. Kumam, “Joule heating in magnetohydrodynamic micropolar boundary layer flow past a stretching sheet with chemical reaction and microstructural slip,” Case Stud. Therm. Eng., vol. 25, pp. 100870, 2021. DOI: 10.1016/j.csite.2021.100870.
  • D. Rajkumar and A. S. Reddy, “Pulsating electrically conducting flow of Au/SWCNTs-blood micropolar nanofluid in a porous channel with Ohmic heating, thermal radiation,” Phys. Scr., vol. 96, no. 125233, pp. 174–182, 2021. DOI: https://doi.org/10.1088/1402-4896/ac2e81.
  • C. Y. Wang, “Pulsatile flow in a porous channel,” J. Appl. Mech. Trans. ASME, vol. 38, no. 2, pp. 553–555, 1971. DOI: 10.1115/1.3408822.
  • G. Radhakrishnamacharya and M. K. Maiti, “Heat transfer to pulsatile flow in a porous channel,” Int. J. Heat Mass Transf., vol. 20, no. 2, pp. 171–173, 1977. DOI: 10.1016/0017-9310(77)90009-6.
  • A. R. Bestman, “Pulsatile flow in heated porous channel,” Int. J. Heat Mass Transf., vol. 25, no. 5, pp. 675–682, 1982. DOI: 10.1016/0017-9310(82)90172-7.
  • K. Govindarajulu, A. Subramanyam Reddy, D. Rajkumar, T. Thamizharasan, M. Dinesh Kumar and K. R. Sekhar, “Numerical investigation on MHD non-Newtonian pulsating Fe3O4-blood nanofluid flow through vertical channel with nonlinear thermal radiation, entropy generation, and Joule heating,” Numerical Heat Transfer, A: Appl., vol. 85, pp. 1–20, 2024. DOI: 10.1080/10407782.2024.2314730.
  • N. H. Hamad, “Numerical investigation of MHD tangent hyperbolic nanofluid flow across a vertical stretching surface subject to activation energy,” J. Therm. Anal. Calorim., vol. 148, no. 22, pp. 12687–12697, 2023. DOI: 10.1007/s10973-023-12548-9.
  • P. Bitla and T. K. V. Iyengar, “Pulsating flow of an incompressible micropolar fluid between permeable beds,” NAMC, vol. 18, no. 4, pp. 399–411, 2013. DOI: 10.15388/NA.18.4.13969.
  • M. A. Sayeed, A. Podder, S. R. Mishra, M. Afikuzzaman and M. M. Alam, “Computational modeling of unsteady mhd nanofluid over a cylinder using gyrotactic microorganisms,” J. Therm. Anal. Calorim., vol. 148, no. 21, pp. 11855–11870, 2023. DOI: 10.1007/s10973-023-12479-5.
  • K. A. Khan, A. R. Seadawy and N. Raza, “The homotopy simulation of SWCNT time dependent three dimensional shear thinning fluid flow over a stretching plate,” Chaos, Solitons Fractals, vol. 157, pp. 111888, 2022. DOI: 10.1016/j.chaos.2022.111888.
  • S. Srinivas, K. Kumar Challa, S. Badeti and P. B. Kumar, “Pulsatile powell-eyring nanofluid flow in a channel with inclined magnetic field and chemical reaction,” Eng. Transac., vol. 71, no. 4, pp. 519–535, 2023. DOI: 10.24423/EngTrans.2768.20231114.
  • J. Cui, Y. Liu and B. M. Fu, “Numerical study on the dynamics of primary cilium in pulsatile flows by the immersed boundary-lattice boltzmann method,” Biomech. Model Mechanobiol., vol. 19, no. 1, pp. 21–35, 2020. DOI: 10.1007/s10237-019-01192-8.
  • G. C. Shit, S. Maiti, M. Roy and J. C. Misra, “Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: a numerical study,” Math. Comput. Simul., vol. 166, pp. 432–450, 2019. DOI: 10.1016/j.matcom.2019.06.015.
  • K. Goyal and S. Srinivas, “Two-layered magnetohydrodynamics of immiscible pulsatile flow in corrugated curved channel,” Int. J. Model. Simul., vol. 44, pp. 1–19, 2024. DOI: 10.1080/02286203.2024.2311967.
  • C. K. Kumar, S. Srinivas and A. S. Reddy, “MHD pulsating flow of cassonnanofluid in a vertical porous space with thermal radiation and joule heating,” J. Mech, vol. 36, no. 4, pp. 535–549, 2020. DOI: 10.1017/jmech.2020.
  • K. Govindarajulu and A. Subramanyam Reddy, “Impacts of Joule heating and viscous dissipation on MHD pulsatile flow of third grade nanofluid in a channel,” Proc. Institution Mech. Engineers, E: J. Process Mech. Eng., vol. 236, no. 4, pp. 1544–1555, 2022. DOI: 10.1177/09544089211068245.
  • A. Tanveer, M. Khan, T. Salahuddin, M. Y. Malik and F. Khan, “Theoretical investigation of peristaltic activity in MHD based blood flow of non-Newtonian material,” Comput. Methods Programs Biomed., vol. 187, no. 105225, 2020. DOI: 10.1016/j.cmpb.2019.105225.
  • I. Waini, A. Ishak and I. Pop, “Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with joule heating and viscous dissipation effects,” Neural Comput. Applic., vol. 34, no. 5, pp. 3783–3794, 2022. DOI: 10.1007/s00521-021-06640-0.
  • D. Rajkumar and A. S. Reddy, “Pulsating hydromagnetic flow of Au-blood micropolar nanofluid in a channel with Ohmic heating, thermal radiation and heat source/sink,” Nonlinear Anal. Model. Control, vol. 27, pp. 576–591, 2022. DOI: 10.15388/namc.2022.27.26602.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer, vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • T. Hayat, M. Kanwal, S. Qayyum and A. Alsaedi, “Entropy generation optimization of MHD Jeffrey nanofluid past a stretchable sheet with activation energy and non-linear thermal radiation,” Phys. A Stat. Mech. Appl., vol. 544, pp. 123437, 2020. DOI: 10.1016/j.physa.2019.123437.
  • T. A. Yusuf, R. N. Kumar, B. C. Prasannakumara and S. O. Adesanya, “Irre- versibility analysis in micropolar fluid film along an incline porous substrate with slip effects,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105357, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105357.
  • M. Jawad, Z. Shah, A. Khan, W. Khan, P. Kumam and S. Islam, “Entropy generation and heat transfer analysis in MHD unsteady rotating flow for aqueous suspensions of carbon nanotubes with nonlinear thermal radiation and viscous dissipation effect,” Entropy, vol. 21, no. 5, pp. 492, 2019. DOI: 10.3390/e21050492.
  • K. Goyal and S. Srinivas, “Entropy generation analysis for hydromagnetic two-layered pulsatile immiscible flow with Joule heating and first-order chemical reaction,” Case Studies Therm. Eng., vol. 47, pp. 103046, 2023. DOI: 10.1016/j.csite.2023.103046.
  • M. Bilal, M. Ramzan, Y. Mehmood, M. K. Alaoui and R. Chinram, “An entropy optimization study of non-Darcian magnetohydrodynamic Williamson nanofluid with nonlinear thermal radiation over a stratified sheet,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 235, no. 6, pp. 1883–1894, 2021. DOI: 10.1177/09544089211027989.
  • A. Mahdy, S. E. Ahmed and M. A. Mansour, “Entropy generation for MHD natural convection in enclosure with a micropolar fluid saturated porous medium with Al2O3 cu water hybrid nanofluid,” NAMC, vol. 26, no. 6, pp. 1123–1143, 2021. DOI: 10.15388/namc.2021.26.24940.
  • S. M. Upadhya, S. V. S. R. Raju, C. S. K. Raju, N. A. Shah and J. D. Chung, “Importance of entropy generation on Casson, micropolar and hybrid magneto-nanofluids in a suspension of cross diffusion,” Chinese J. Phys, vol. 77, pp. 1080-1101, 2021. DOI: 10.1016/j.cjph.2021.10.016.
  • K. Govindarajulu, A. Subramanyam Reddy and A. J. Chamkha, “Entropy analysis on oscillating flow of third grade nanofluid in a channel with Joule heating: a Buongiorno model approach,” Eur. Phys. J. Plus, vol. 138, no. 5, pp. 416, 2023. DOI: 10.1140/epjp/s13360.-023-04061-7.
  • T. Barman, S. Roy and A. J. Chamkha, “Analysis of entropy production in a bi-convective magnetized and radiative hybrid nanofluid flow using temperature-sensitive base fluid (water) properties,” Sci. Rep., vol. 12, no. 1, pp. 11831, 2022. DOI: 10.1038/s41598-022-16059-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.