6
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing thermal transfer in airfoil structures through advanced simulation techniques and MOPSO optimization

ORCID Icon, ORCID Icon & ORCID Icon
Received 28 Nov 2023, Accepted 12 Apr 2024, Published online: 06 May 2024

References

  • K. R. Abbasi, M. Shahbaz, J. Zhang, M. Irfan and R. Alvarado, “Analyze the environmental sustainability factors of China: the role of fossil fuel energy and renewable energy,” Renew. Energy, vol. 187, pp. 390–402, Mar. 2022. DOI: 10.1016/j.renene.2022.01.066.
  • T. Ma, S. Li, W. Gu, S. Weng, J. Peng and G. Xiao, “Solar energy harvesting pavements on the road: comparative study and performance assessment,” Sustain. Cities Soc., vol. 81, pp. 103868, Jun. 2022. DOI: 10.1016/j.scs.2022.
  • J. D. Tan, C. C. W. Chang, M. A. S. Bhuiyan, K. N. Minhad and K. Ali, “Advancements of wind energy conversion systems for low-wind urban environments: a review,” Energy Rep., vol. 8, pp. 3406–3414, Nov. 2022. DOI: 10.1016/j.egyr.2022.02.153.
  • M. Saleem, “Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source,” Heliyon, vol. 8, no. 2, pp. e08905, Feb. 2022. DOI: 10.1016/J.HELIYON.2022.E08905.
  • L. Zhan, Y. Bo, T. Lin and Z. Fan, “Development and outlook of advanced nuclear energy technology,” Energy Strategy Rev., vol. 34, pp. 100630, Mar. 2021. DOI: 10.1016/j.esr.2021.100630.
  • H. S. Lee, W. W. Carr, H. W. Beckham and J. Leisen, “A model of through-air drying of tufted textile materials,” Int. J. Heat Mass Transf., vol. 45, no. 2, pp. 357–366, Jan. 2002. DOI: 10.1016/S0017-9310(01)00130-2.
  • M. Qian, J. Wang, Z. Xiang, Z. Zhao and X. Hu, “Heat and moisture transfer performance of thin cotton fabric under impingement drying,” Textile Res. J., vol. 89, no. 15, pp. 3089–3097, Aug. 2019. DOI: 10.1177/0040517518807446.
  • M. Hossein Zolfagharnasab, M. Zamani Pedram, S. Hoseinzadeh and K. Vafai, “Application of Porous-Embedded shell and tube heat exchangers for the waste heat recovery systems,” Appl. Therm. Eng., vol. 211, pp. 118452, Jul. 2022. DOI: 10.1016/j.applthermaleng.2022.118452.
  • A. Burlacu et al., “Energy efficient heat pipe heat exchanger for waste heat recovery in buildings,” Proc. Manuf., vol. 22, pp. 714–721, Jan. 2018. DOI: 10.1016/j.promfg.2018.03.103.
  • H. Jouhara et al., “Investigation on a full-scale heat pipe heat exchanger in the ceramics industry for waste heat recovery,” Energy, vol. 223, pp. 120037, May 2021. DOI: 10.1016/j.energy.2021.120037.
  • T. Chen, G. Shu, H. Tian, T. Zhao, H. Zhang and Z. Zhang, “Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery,” Appl. Energy, vol. 266, pp. 114875, May 2020. DOI: 10.1016/j.apenergy.2020.114875.
  • S. Sharma et al., “Computational fluid dynamics analysis of flow patterns, pressure drop, and heat transfer coefficient in staggered and inline shell-tube heat exchangers,” Math. Probl. Eng., vol. 2021, pp. 1–10Jun. 2021. DOI: 10.1155/2021/6645128.
  • V. Gorobets, Y. Bohdan, V. Trokhaniak and I. Antypov, “Investigations of heat transfer and hydrodynamics in heat exchangers with compact arrangements of tubes,” Appl. Therm. Eng., vol. 151, pp. 46–54, Mar. 2019. DOI: 10.1016/j.applthermaleng.2019.01.059.
  • C. Y. Zhao, Z. L. Yao, D. Qi, W. T. Ji, A. G. Li and W. Q. Tao, “Numerical investigation of tube bundle arrangement effect on falling film fluid flow and heat transfer,” Appl. Therm. Eng., vol. 201, pp. 117828, Jan. 2022. DOI: 10.1016/j.applthermaleng.2021.117828.
  • V. Gorobets, V. Trokhaniak, Y. Bohdan and I. Antypov, “Numerical modeling of heat transfer and hydrodynamics in compact shifted arrangement small diameter tube bundles,” J. Appl. Computat. Mech., vol. 7, no. 1, pp. 292–301, Dec. 2021. DOI: 10.22055/jacm.2020.31007.1855.
  • M. Marcinkowski, D. Taler, J. Taler and K. Węglarz, “Thermal calculations of four-row plate-fin and tube heat exchanger taking into account different air-side correlations on individual rows of tubes for low reynold numbers,” Energies (Basel), vol. 14, no. 21, pp. 6978, Oct. 2021. DOI: 10.3390/en1421.
  • D. Taler, J. Taler and M. Trojan, “Experimental verification of an analytical mathematical model of a round or oval tube two-row car radiator,” Energies (Basel), vol. 13, no. 13, pp. 3399, Jul. 2020. DOI: 10.3390/en1313.
  • M. Zeeshan, V. Kumar, S. Nath and D. Bhanja, “A numerical investigation on the performance of finned tube heat exchangers having alternate arrangements of flat and circular tubes,” J. Phys. Conf. Ser., vol. 1172, pp. 012057, Apr. 2019. DOI: 10.1088/1742-6596/1172/1/012057.
  • M. R. Saffarian, F. Fazelpour and M. Sham, “Numerical study of shell and tube heat exchanger with different cross-section tubes and combined tubes,” Int. J. Energy Environ. Eng., vol. 10, no. 1, pp. 33–46, Mar. 2019. DOI: 10.1007/s40095-019-0297-9.
  • X. L. Tian, H. Jin, K. W. Song, L. C. Wang, S. Liu and L. B. Wang, “Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators,” Exp. Heat Transf., vol. 31, no. 4, pp. 297–316, Jul. 2018. DOI: 10.1080/08916152.2017.1410503.
  • S. H. Abdulmalek, M. K. Assadi, H. H. Al-Kayiem and A. A. Gitan, “Effect of tube diameter on the design of heat exchanger in solar drying system,” presented at the IOP Conference Series: Materials Science and Engineering, Mar. 2018. Batu Ferringhi, Penang, Malaysia. DOI: 10.1088/1757-899X/328/1/012028.
  • K. W. Song, Z. P. Xi, M. Su, L. C. Wang, X. Wu and L. B. Wang, “Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 82, pp. 8–18, Apr. 2017. DOI: 10.1016/j.expthermflusci.2016.11.002.
  • L. Liu et al., “Experimental and numerical investigation on shell-and-tube exhaust gas recirculation cooler with different tube bundles,” Heat Mass Transf., vol. 56, no. 2, pp. 601–615, Feb. 2020. DOI: 10.1007/s00231-019-02721-y.
  • S. Huang and S. B. Jacobsen, “Calcium isotopic compositions of chondrites,” Geochim Cosmochim Acta, vol. 201, pp. 364–376, Mar. 2017. DOI: 10.1016/j.gca.2016.09.039.
  • M. Qian, D. Mei, Z. Yi, Y. Feng and Z. Chen, “Fluid flow and heat transfer performance in a micro-reactor with non-uniform micro-pin-fin arrays for hydrogen production at low Reynolds number,” Int. J. Hydrogen Energy, vol. 42, no. 1, pp. 553–561, Jan. 2017. DOI: 10.1016/j.ijhydene.2016.10.150.
  • H. M. S. Bahaidarah, N. K. Anand and H. C. Chen, “A numerical study of fluid flow and heat transfer over a bank of flat tubes,” Numer. Heat Transf. A Appl., vol. 48, no. 4, pp. 359–385, Sep. 2005. DOI: 10.1080/10407780590957134.
  • Z. Wu, S. You, H. Zhang and W. Zheng, “A comparative experimental study on the performance of staggered tube-bundle heat exchanger with unequally-pitch and equally-pitch arrangement in oscillating flow,” Int. J. Heat Mass Transf., vol. 154, pp. 119680, Jun. 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119680.
  • S. Dogan, S. Darici and M. Ozgoren, “Numerical comparison of thermal and hydraulic performances for heat exchangers having circular and elliptic cross-section,” Int. J. Heat Mass Transf., vol. 145, pp. 118731, Dec. 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.118731.
  • P. Promvonge, P. Promthaisong and S. Skullong, “Heat transfer augmentation in solar heat exchanger duct with louver-punched V-baffles,” Solar Energy, vol. 248, pp. 103–120, Dec. 2022. DOI: 10.1016/j.solener.2022.11.009.
  • R. S. Matos, J. V. C. Vargas, T. A. Laursen and F. E. M. Saboya, “Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection,” Int. J. Heat Mass Transf., vol. 44, no. 20, pp. 3953–3961, Oct. 2001. DOI: 10.1016/S0017-9310(01)00006-0.
  • H. Zhu et al., “Thermal-hydraulic performance and optimization of tube ellipticity in a plate fin-and-tube heat exchanger,” J. Electron. Pack. Trans. ASME, vol. 141, no. 3, pp. 1-21, Sep. 2019. DOI: 10.1115/1.4043482.
  • F. Djeffal et al., “Numerical investigation of thermal-flow characteristics in heat exchanger with various tube shapes,” Appl. Sci. (Switzerland), vol. 11, no. 20, pp. 9477, Oct. 2021. DOI: 10.3390/app1120.
  • A. M. Darbari and M. A. Alavi, “Application of Taguchi method in the numerical analysis of fluid flow and heat transfer around a flat tube with various axial ratios,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105472, Jul. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105472.
  • T. G. Walmsley, M. R. W. Walmsley, M. J. Atkins, J. Hoffman-Vocke and J. R. Neale, “Numerical performance comparison of different tube cross–sections for heat recovery from particle-laden exhaust gas streams,” Proc. Eng., vol. 42, pp. 1351–1364, Jan. 2012. DOI: 10.1016/j.proeng.2012.07.527.
  • C. S. Wang, C. C. Chen, W. C. Chang and T. M. Liou, “Experimental studies of turbulent pulsating flow and heat transfer in a serpentine channel with winglike turbulators,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105837, Feb. 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105837.
  • N. Cheriet, H. Amirat, A. Korichi and G. Polidori, “Conjugate heat transfer enhancement over heated blocks using airfoil deflectors,” Thermal Sci. Eng. Prog., vol. 25, pp. 101011, Oct. 2021. DOI: 10.1016/j.tsep.2021.101011.
  • R. Deeb and A. A. Ani, “Numerical investigation of heat transfer characteristics of in-line drop-shaped tubes bundle,” presented at the 2021 3rd Int. Conf. on Control Syst. Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2021, pp. 1046–1050. Lipetsk, Russian Federation. DOI: 10.1109/SUMMA53307.2021.9632258.
  • R. Q. Anas and M. A. Mussa, “Maximization of heat transfer density from a single-row cross-flow heat exchanger with wing-shaped tubes using constructal design,” Heat Trans., vol. 50, no. 6, pp. 5906–5924, Sep. 2021. DOI: 10.1002/htj.22155.
  • F. Ismayilov, A. Akturk and Y. Peles, “Systematic micro heat sink optimization based on hydrofoil shape pin fins,” Case Stud. Thermal Eng., vol. 26, pp. 101028, Aug. 2021. DOI: 10.1016/j.csite.2021.101028.
  • M. Qian, J. Li, Z. Xiang, C. Yan and X. Hu, “Effect of pin diameter degressive gradient on heat transfer in a microreactor with non-uniform pin-fin array under low reynolds number conditions,” Energies (Basel, vol. 12, no. 14, pp. 2702, Jul. 2019. DOI: 10.3390/en12142702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.