29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the influence of nanolayer morphology on magnetized tri-hybrid nanofluid flow using artificial neural networks and Levenberg–Marquardt optimization

, , &
Received 19 Feb 2024, Accepted 20 Apr 2024, Published online: 07 May 2024

References

  • W. Abbas, M. Z. Bani-Fwaz and K. Kenneth Asogwa, Adnan, “Thermal efficiency of radiated tetra-hybrid nanofluid [(Al2O3-CuO-TiO2-Ag)/water] tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection,” Sci. Prog., vol. 106, no. 1, pp. 00368504221149797, Jan 8, 2023. DOI: 10.1177/00368504221149797.
  • Z. Mahmood and U. Khan, “Unsteady three-dimensional nodal stagnation point flow of polymer-based ternary-hybrid nanofluid past a stretching surface with suction and heat source,” Sci. Prog., vol. 106, no. 1, pp. 368504231152741, Jan 26, 2023. DOI: 10.1177/00368504231152741.
  • N. Rathore and N. Sandeep, “Dynamics of heat passage in hybrid and tri-hybrid Oldroyd-B blood flows through a wedge-shaped artery: a medical application,” Numer. Heat Transf. A Appl., vol. 85, no. 8, pp. 1300–1316, Apr 19, 2023. DOI: 10.1080/10407782.2023.2201483.
  • K. F. Al Oweidi, F. Shahzad, W. Jamshed, R. W. Ibrahim, E. S. M. T. El Din, A. M. AlDerea, Usman, Partial differential equations of entropy analysis on ternary hybridity nanofluid flow model via rotating disk with hall current and electromagnetic radiative influences. Sci. Rep., vol. 12, no. 1, pp. 20692, Nov 30, 2022. DOI: 10.1038/s41598-022-24895-y.
  • L. S. Sundar, K. V. Chandra Mouli, Z. Said and A. C. Sousa, “Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow,” J. Thermal Sci. Eng. Appl., vol. 13, no. 5, pp. 051021, Mar 16, 2021. DOI: 10.1115/1.4050228.
  • Q. Raza, X. Wang, F. Ullah Khan and A. J. Chamkha, “Role of Lorentz force and nanoparticles morphology on the dynamics of ternary hybrid nanofluid flow subject to porous disks and gyrotactic microorganisms,” Numer. Heat Transf. A Appl., vol. 51, pp. 1–24, Dec 11, 2023, Article 103534. DOI: 10.1080/10407782.2023.2290084.
  • M. Bilal et al., “Numerical analysis of an unsteady, electroviscous, ternary hybrid nanofluid flow with chemical reaction and activation energy across parallel plates,” Micromachines (Basel), vol. 13, no. 6, pp. 874, May 31, 2022. DOI: 10.3390/mi13060874.
  • Z. Xuan, Y. Zhai, M. Ma, Y. Li and H. Wang, “Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids,” J. Mol. Liq., vol. 323, pp. 114889, Feb 1, 2021. DOI: 10.1016/j.molliq.2020.114889.
  • A. Fattahi and N. Karimi, “Numerical simulation of the effects of superhydrophobic coating in an oval cross-sectional solar collector with a wavy absorber filled with water-based Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid,” Sustain. Energy Technol. Assess., vol. 50, pp. 101881, Mar 2022. DOI: 10.1016/j.seta.2021.101881.
  • K. Sarada et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model,” Case Stud. Thermal Eng., vol. 38, pp. 102332, Oct 2022. DOI: 10.1016/j.csite.2022.102332.
  • Q. Raza, X. Wang, B. Ali, M. Z. A. Qureshi and A. J. Chamkha, “Heat and mass transfer phenomenon and aligned entropy generation with simultaneous effect for magnetized ternary nanoparticles induced by ferro and nano-layer fluid flow of porous disk subject to motile microorganisms,” Numer. Heat Transf. A Appl., pp. 1–29, Dec 22, 2023. DOI: 10.1080/10407782.2023.2292767.
  • I. L. Animasaun, S. J. Yook, T. Muhammad and A. Mathew, “Dynamics of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a convectively heated surface,” Surf. Interfaces, vol. 28, pp. 101654, Feb 2022. DOI: 10.1016/j.surfin.2021.101654.
  • I. Zahan, R. Nasrin and S. Khatun, “Thermal performance of ternary-hybrid nanofluids through a convergent-divergent nozzle using distilled water-ethylene glycol mixtures,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106254, Oct 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106254.
  • B. Nagaraja, K. G. Vidhya, F. Almeida and P. Kumar, “Numerical illustration of diffusive flow of blood-based tri-hybrid nanofluid generated by a curved stretching sheet using law of porosity,” Numer. Heat Transf. A Appl., pp. 1–22, Apr 2, 2024. DOI: 10.1080/10407782.2024.2333042.
  • T. Von Kármán, “Uber laminare und turbulente Reibung,” Z Angew. Math. Mech., vol. 1, no. 4, pp. 233–252, 1921. DOI: 10.1002/zamm.19210010401.
  • J. F. Brady and L. Durlofsky, “On rotating disk flow,” J. Fluid Mech., vol. 175, no. 1, pp. 363–394, Apr 21, 1987. DOI: 10.1017/S0022112087000430.
  • A. Kumari, A. Kumar and R. Tripathi, “Insight into the thermocapillary radiative flow of hybrid nanoliquid film over an infinite rotating disk with entropy generation and heat source,” Int. J. Mod. Phys. B, vol. 2450279, Jul 5, 2023. DOI: 10.1142/S0217979224502795.
  • M. M. Rashidi, S. Abelman and N. F. Mehr, “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid,” Int. J. Heat Mass Transf., vol. 62, pp. 515–525, Jul 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.004.
  • H. I. Andersson and E. De Korte, “MHD flow of a power-law fluid over a rotating disk,” Eur. J. Mech. B Fluids, vol. 21, no. 3, pp. 317–324, 2002. DOI: 10.1016/S0997-7546(02)01184-6.
  • M. S. Abdel-Wahed and T. G. Emam, “Effect of Joule heating and Hall current on MHD flow of a nanofluid due to a rotating disk with viscous dissipation,” Therm. Sci., vol. 22, no. 2, pp. 857–870, 2018. DOI: 10.2298/TSCI160312218A.
  • Z. Uddin, R. Asthana, M. Kumar Awasthi and S. Gupta. “Steady MHD flow of nano-fluids over a rotating porous disk in the presence of heat generation/absorption: a numerical study using PSO.” J. Appl. Fluid Mech., vol. 10, no. 3, pp. 871–879, 2017.
  • M. Turkyilmazoglu, “Anomalous heat transfer enhancement by slip due to nanofluids in circular concentric pipes,” Int. J. Heat Mass Transf., vol. 85, pp. 609–614, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.02.015.
  • M. Z. A. Qureshi, S. Bilal, M. Y. Malik, Q. Raza, E. S. M. Sherif and Y. M. Li, “Dispersion of metallic/ceramic matrix nanocomposite material through porous surfaces in magnetized hybrid nanofluids flow with shape and size effects,” Sci. Rep., vol. 11, no. 1, pp. 12271, Jun 10, 2021. DOI: 10.1038/s41598-021-91152-z.
  • K. Sharma, N. Vijay, F. Mabood and I. A. Badruddin, “Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105977, Jun 2015. DOI: 10.1016/j.icheatmasstransfer.2022.105977.
  • P. G. R. Jayadevamurthy, N. K. Rangaswamy, B. C. Prasannakumara and K. S. Nisar, “Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward–downward moving rotating disk,” Numer. Methods Partial, vol. 40, no. 1, pp. e22680, Nov 27, 2024. DOI: 10.1002/num.22680.
  • H. Ullah, M. Shoaib, A. Akbar, M. A. Z. Raja, S. Islam and K. S. Nisar, “Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 16371–16391, May 24, 2022. DOI: 10.1007/s13369-022-06925-z.
  • A. M. Alklaibi, K. V. C. Mouli and L. S. Sundar, “Heat transfer, and friction factor of Fe3O4–SiO2/water hybrid nanofluids in a plate heat exchanger: experimental and ANN predictions,” Int. J. Thermal Sci., vol. 195, pp. 108608, Jan 2024. DOI: 10.1016/j.ijthermalsci.2023.108608.
  • A. B. Çolak, “A novel comparative analysis between the experimental and numeric methods on viscosity of zirconium oxide nanofluid: developing optimal artificial neural network and new mathematical model,” Powder Technol., vol. 381, pp. 338–351, Mar 2021. DOI: 10.1016/j.powtec.2020.12.053.
  • X. He, M. O. Sidi, N. A. Ahammad, M. A. Elkotb, S. Elattar and A. M. Algelany, “Artificial neural network joined with lattice Boltzmann method to study the effects of MHD on the slip velocity of FMWNT/water nanofluid flow inside a microchannel,” Eng. Anal. Bound. Elements, vol. 143, pp. 95–108, Oct 2022. DOI: 10.1016/j.enganabound.2022.05.027.
  • Y. Qu et al., “Artificial neural network modeling of thermal characteristics of WO3-CuO (50: 50)/water hybrid nanofluid with a back-propagation algorithm,” Mater. Today Commun., vol. 38, pp. 108169, Mar 2024. DOI: 10.1016/j.mtcomm.2024.108169.
  • M. B. Rekha, I. E. Sarris, J. K. Madhukesh, K. R. Raghunatha and B. C. Prasannakumara, “Activation energy impact on flow of AA7072-AA7075/Water-Based hybrid nanofluid through a cone, wedge and plate,” Micromachines (Basel), vol. 13, no. 2, pp. 302, Feb 16, 2022. DOI: 10.3390/mi13020302.
  • M. M. Bhatti, M. B. Arain, A. Zeeshan, R. Ellahi and M. H. Doranehgard, “Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: application of thermal energy storage,” J. Energy Storage, vol. 45, pp. 103511, Jan 2022. DOI: 10.1016/j.est.2021.103511.
  • K. Hosseinzadeh, A. R. Mogharrebi, A. Asadi, M. Sheikhshahrokhdehkordi, S. Mousavisani and D. D. Ganji, “Entropy generation analysis of mixture nanofluid (H2O/C2H6O2)–Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 1045–1057, 2022. DOI: 10.1080/01430750.2019.1681294.
  • T. Hussain, H. Xu, A. Raees and Q. K. Zhao, “Unsteady three-dimensional MHD flow and heat transfer in porous medium suspended with both microorganisms and nanoparticles due to rotating disks,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1607–1619, 2022. DOI: 10.1007/s10973-020-10528-x.
  • N. Shehzad, A. Zeeshan, M. Shakeel, R. Ellahi and S. M. Sait, “Effects of magnetohydrodynamics flow on multilayer coatings of Newtonian and non-Newtonian fluids through porous inclined rotating channel,” Coatings, vol. 12, no. 4, pp. 430, Mar 23, 2022. DOI: 10.3390/coatings12040430.
  • Q. Raza et al., “Insight into dynamic of mono and hybrid nanofluids subject to binary chemical reaction, activation energy, and magnetic field through the porous surfaces,” Mathematics, vol. 10, no. 16, pp. 3013, Aug 21, 2022. DOI: 10.3390/math10163013.
  • S. Saleem, B. Ahmad, A. Naseem, M. B. Riaz and T. Abbas, “Mono and hybrid nanofluid analysis over shrinking surface with thermal radiation: a numerical approach,” Case Stud. Thermal Eng., vol. 54, pp. 104023, Feb 2024. DOI: 10.1016/j.csite.2024.104023.
  • F. Mebarek-Oudina, I. Chabani, H. Vaidya and A. A. I. Ismail, “Hybrid-nanofluid magneto-convective flow and porous media contribution to entropy generation,” HFF, vol. 34, no. 2, pp. 809–836, Feb 23, 2024. DOI: 10.1108/HFF-06-2023-0326.
  • M. M. Alanazi et al., “Significance of multi-hybrid morphology nanoparticles on the dynamics of water fluid subject to thermal and viscous joule performance,” Mathematics, vol. 10, no. 22, pp. 4259, Nov 14, 2022. DOI: 10.3390/math10224259.
  • I. Mehdi, Z. Abbas and J. Hasnain, “MHD flow and heat transfer between two rotating disks under the effects of nanomaterials (MoS2) and thermal radiation,” Case Stud. Thermal Eng., vol. 33, pp. 101968, May 2022. DOI: 10.1016/j.csite.2022.101968.
  • B. J. Gireesha, B. M. Shankaralingappa, B. C. Prasannakumar and B. Nagaraja, “MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 2931–2939, 2022. DOI: 10.1080/01430750.2020.1785938.
  • M. G. Reddy, K. B. S. Latha, D. Tripathi, O. A. Bég, S. Kuharat and M. L. Burby, “Ternary cobalt ferrite (CoFeO4)-silver (Ag)-titanium dioxide (TiO2) hybrid nanofluid hydromagnetic nonlinear radiative-convective flow from a rotating disk with viscous dissipation, non-Darcy and non-Fourier effects: swirl coating simulation,” Numer. Heat Transf. A Appl., pp. 1–27, Jan 3, 2023. DOI: 10.1080/10407782.2023.2299295.
  • S. Abdal, I. Siddique, D. Alrowaili, Q. Al-Mdallal and S. Hussain, “Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy,” Sci. Rep., vol. 12, no. 1, pp. 278, Jan 7, 2022. DOI: 10.1038/s41598-021-04581-1.
  • N. S. Khashi’ie, N. M. Arifin and I. Pop, “Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating,” Alexandria Eng., vol. 61, pp. 1938–1945, Mar 2022. DOI: 10.1016/j.aej.2021.07.032.
  • M. Z. A. Qureshi et al., “Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material,” Mathematics, vol. 8, no. 1, pp. 633–656, Oct 9, 2022. DOI: 10.3934/math.2023030.
  • A. Rauf, N. A. Shah, T. Botmart, Faisal, “Hall current and morphological effects on MHD micropolar non-Newtonian tri-hybrid nanofluid flow between two parallel surfaces,” Sci. Rep., vol. 12, no. 1, pp. 16608, Oct 5, 2022. DOI: 10.1038/s41598-022-19625-3.
  • E. Bas, V. R. Uslu and E. Egrioglu, “Robust learning algorithm for multiplicative neuron model artificial neural networks,” Expert Syst. Appl., vol. 56, pp. 80–88, Sept 1, 2016. DOI: 10.1016/j.eswa.2016.02.051.
  • Y. Wang, J. Yang, Y. Mo, C. Xiao and W. An, “Disparity estimation for camera arrays using reliability guided disparity propagation,” IEEE Access, vol. 6, pp. 21840–21849, 2018. DOI: 10.1109/ACCESS.2018.2827085.
  • M. López, S. Valero, C. Senabre, J. Aparicio and A. Gabaldon, “Application of SOM neural networks to short-term load forecasting: the Spanish electricity market case study,” Electric Power Syst. Res., vol. 91, pp. 18–27, Oct 2012. DOI: 10.1016/j.epsr.2012.04.009.
  • M. Ibrahim, S. Jemei, G. Wimmer and D. Hissel, “Nonlinear autoregressive neural network in an energy management strategy for battery/ultra-capacitor hybrid electrical vehicles,” Electric Power Syst. Res., vol. 136, pp. 262–269, Jul 2016. DOI: 10.1016/j.epsr.2016.03.005.
  • K. Ali, M. Z. Akbar, M. F. Iqbal and M. Ashraf, “Numerical simulation of heat and mass transfer in unsteady nanofluid between two orthogonally moving porous coaxial disks,” AIP Adv., vol. 4, no. 10, p. 107113, Oct 8, 2014. DOI: 10.1063/1.4897947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.