214
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, M. A. Nameghi, T. S. Zavvar, and S. M. Taghdisi. 2021. A novel colorimetric aptasensor for ultrasensitive detection of aflatoxin M1 based on the combination of CRISPR-Cas12a, rolling circle amplification and catalytic activity of gold nanoparticles. Analytica Chimica Acta 1165:338549. doi: 10.1016/j.aca.2021.338549.
  • Ali, M. M., F. Li, Z. Zhang, K. Zhang, D.-K. Kang, J. A. Ankrum, X. C. Le, and W. Zhao. 2014. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews 43 (10):3324–41. doi: 10.1039/c3cs60439j.
  • Augspurger, E. E., M. Rana, and M. V. Yigit. 2018. Chemical and biological sensing using hybridization chain reaction. ACS Sensors 3 (5):878–902. doi: 10.1021/acssensors.8b00208.
  • Baek, Y. H., J. Um, K. J. C. Antigua, J.-H. Park, Y. Kim, S. Oh, Y.-I. Kim, W.-S. Choi, S. G. Kim, J. H. Jeong, et al. 2020. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerging Microbes & Infections 9 (1):998–1007. doi: 10.1080/22221751.2020.1756698.
  • Bai, L., L. Wang, S. Huang, R. Bai, X. Lv, L. Sun, F. Zhang, and X. Xu. 2022a. Rapid, visual, and sequence-specific detection of Salmonella in egg liquid with vis-NEAA, a CRISPR/Cas12 empowered new strategy. Journal of Agricultural and Food Chemistry 70 (7):2401–9. doi: 10.1021/acs.jafc.1c06715.
  • Bai, Y., J. Ji, F. Ji, S. Wu, Y. Tian, B. Jin, and Z. Li. 2022b. Recombinase polymerase amplification integrated with microfluidics for nucleic acid testing at point of care. Talanta 240:123209. doi: 10.1016/j.talanta.2022.123209.
  • Barreda-García, S., R. Miranda-Castro, N. de-Los-Santos-Álvarez, A. J. Miranda-Ordieres, and M. J. Lobo-Castañón. 2018. Helicase-dependent isothermal amplification: A novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Analytical and Bioanalytical Chemistry 410 (3):679–93. doi: 10.1007/s00216-017-0620-3.
  • Becherer, L., N. Borst, M. Bakheit, S. Frischmann, R. Zengerle, and F. von Stetten. 2020. Loop-mediated isothermal amplification (LAMP)–Review and classification of methods for sequence-specific detection. Analytical Methods 12 (6):717–46. doi: 10.1039/C9AY02246E.
  • Benkerroum, N. 2019. Retrospective and prospective look at aflatoxin research and development from a practical standpoint. International Journal of Environmental Research and Public Health 16 (19):3633. doi: 10.3390/ijerph16193633.
  • Bi, Z.-R., M.-L. Hu, Y.-Z. Jiang, E.-H. Xiong, B.-W. Shu, S.-Q. Li, H.-W. Chen, X.-H. Chen, and X.-M. Zhou. 2022. Development of a handheld nano-centrifugal device for visual virus detection. Journal of Analysis and Testing 6 (4):353–64. doi: 10.1007/s41664-022-00232-0.
  • Bonini, A., N. Poma, F. Vivaldi, A. Kirchhain, P. Salvo, D. Bottai, A. Tavanti, and F. Di Francesco. 2021. Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis 192:113645. doi: 10.1016/j.jpba.2020.113645.
  • Cao, X., C. Chen, and Q. Zhu. 2023. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta 253:123977. doi: 10.1016/j.talanta.2022.123977.
  • Carter, J. G., L. Orueta Iturbe, J.-L H. A. Duprey, I. R. Carter, C. D. Southern, M. Rana, C. M. Whalley, A. Bosworth, A. D. Beggs, M. R. Hicks, et al. 2021. Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription–free exponential amplification reaction, RTF-EXPAR. Proceedings of the National Academy of Sciences 118 (35):e2100347118. doi: 10.1073/pnas.2100347118.
  • Ceniti, C., B. Tilocca, D. Britti, A. Santoro, and N. Costanzo. 2021. Food safety concerns in “COVID-19 era”. Microbiology Research 12 (1):53–68. doi: 10.3390/microbiolres12010006.
  • Chai, H., W. Cheng, D. Jin, and P. Miao. 2021. Recent progress in DNA hybridization chain reaction strategies for amplified biosensing. ACS Applied Materials & Interfaces 13 (33):38931–46. doi: 10.1021/acsami.1c09000.
  • Chaouch, M. 2021. Loop‐mediated isothermal amplification (LAMP): An effective molecular point‐of‐care technique for the rapid diagnosis of coronavirus SARS‐CoV‐2. Reviews in Medical Virology 31 (6):e2215. doi: 10.1002/rmv.2215.
  • Chen, L., and W. Alali. 2018. Recent discoveries in human serious foodborne pathogenic bacteria: Resurgence, pathogenesis, and control strategies. Frontiers Media SA 9: 2412.
  • Choi, J. R., K. W. Yong, J. Y. Choi, and A. C. Cowie. 2019. Emerging point-of-care technologies for food safety analysis. Sensors 19 (4):817. doi: 10.3390/s19040817.
  • Del Giovane, S., N. Bagheri, A. C. Di Pede, A. Chamorro, S. Ranallo, D. Migliorelli, L. Burr, S. Paoletti, H. Altug, and A. Porchetta. 2024. Challenges and perspectives of CRISPR-based technology for diagnostic applications. TrAC: Trends in Analytical Chemistry 172:117594. doi: 10.1016/j.trac.2024.117594.
  • Dong, D., K. Ren, X. Qiu, J. Zheng, M. Guo, X. Guan, H. Liu, N. Li, B. Zhang, D. Yang, et al. 2016. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532 (7600):522–6. doi: 10.1038/nature17944.
  • Dou, X., L. Zhang, R. Yang, X. Wang, L. Yu, X. Yue, F. Ma, J. Mao, X. Wang, W. Zhang, et al. 2023. Mass spectrometry in food authentication and origin traceability. Mass Spectrometry Reviews 42 (5):1772–807. doi: 10.1002/mas.21779.
  • Esteki, M., Z. Shahsavari, and J. Simal-Gandara. 2019. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Research International (Ottawa, Ont.) 122:303–17. doi: 10.1016/j.foodres.2019.04.025.
  • Glökler, J., T. S. Lim, J. Ida, and M. Frohme. 2021. Isothermal amplifications – A comprehensive review on current methods. Critical Reviews in Biochemistry and Molecular Biology 56 (6):543–86. doi: 10.1080/10409238.2021.1937927.
  • Green, M. R., and J. Sambrook. 2019. Polymerase chain reaction. Cold Spring Harbor Protocols 2019 (6):top095109. doi: 10.1101/pdb.top095109.
  • Haag, A. F., J. R. Fitzgerald, and J. R. Penadés. 2019. Staphylococcus aureus in animals. Microbiology Spectrum 7 (3):10–1128. doi: 10.1128/microbiolspec.gpp3-0060-2019.
  • Hameed, S., L. Xie, and Y. Ying. 2018. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology 81:61–73. doi: 10.1016/j.tifs.2018.05.020.
  • Han, J., S. Kim, S. Kim, E. S. Lee, B. S. Cha, J. S. Park, J. Shin, Y. Jang, and K. S. Park. 2023. Cas12a-based primer production enables isothermal amplification for nucleic acid detection. Sensors and Actuators B: Chemical 381:133401. doi: 10.1016/j.snb.2023.133401.
  • Harrison, A. G., T. Lin, and P. Wang. 2020. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology 41 (12):1100–15. doi: 10.1016/j.it.2020.10.004.
  • Hu, B., H. Guo, P. Zhou, and Z.-L. Shi. 2021. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews. Microbiology 19 (3):141–54. doi: 10.1038/s41579-020-00459-7.
  • Huang, L.-N., Z.-J. Zhong, Q.-J. Lu, F. Chen, L.-L. Xie, C.-Y. Wu, and Y.-Y. Zhang. 2022. Simple enzyme-free biosensor for highly sensitive and selective detection of miR-21 based on multiple signal amplification strategy. Journal of Analysis and Testing 6 (1):36–43. doi: 10.1007/s41664-022-00214-2.
  • Huang, S., Y. Liu, X. Zhang, Z. Gai, H. Lei, and X. Shen. 2023. A rapid RPA-CRISPR/Cas12a detection method for adulteration of goat milk powder. Foods (Basel, Switzerland) 12 (8):1569. doi: 10.3390/foods12081569.
  • Hutchings, M. I., A. W. Truman, and B. Wilkinson. 2019. Antibiotics: Past, present and future. Current Opinion in Microbiology 51:72–80. doi: 10.1016/j.mib.2019.10.008.
  • Ivanova, A. S., A. D. Merkuleva, S. V. Andreev, and K. A. Sakharov. 2019. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chemistry 283:431–6. doi: 10.1016/j.foodchem.2019.01.051.
  • Jäger, R., and H. Weiher. 2020. Polymerase chain reaction. An introduction to molecular biotechnology: Fundamentals, methods and applications.
  • Kim, U., S.-Y. Lee, and S.-W. Oh. 2023. Thermophilic helicase-dependent amplification-based CRISPR/Cas12a system: Detection of stx2 in Escherichia coli O157: H7 by controlling primer dimers. Analytica Chimica Acta 1239:340679. doi: 10.1016/j.aca.2022.340679.
  • Lamers, M. M., and B. L. Haagmans. 2022. SARS-CoV-2 pathogenesis. Nature Reviews. Microbiology 20 (5):270–84. doi: 10.1038/s41579-022-00713-0.
  • Ledford, H., and E. Callaway. 2020. Pioneers of CRISPR gene editing win chemistry Nobel. Nature 586 (7829):346–7. doi: 10.1038/d41586-020-02765-9.
  • Li, C.-Y., B. Zheng, Y.-H. Liu, J.-L. Gao, M.-Q. Zheng, D.-W. Pang, and H.-W. Tang. 2020a. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosensors & Bioelectronics 169:112650. doi: 10.1016/j.bios.2020.112650.
  • Li, D., T. Zhang, F. Yang, R. Yuan, and Y. Xiang. 2019a. Efficient and exponential rolling circle amplification molecular network leads to ultrasensitive and label-free detection of MicroRNA. Analytical Chemistry 92 (2):2074–9. doi: 10.1021/acs.analchem.9b04585.
  • Li, D., M. Y. Zhao, and T. H. M. Tan. 2021a. What makes a foodborne virus: Comparing coronaviruses with human noroviruses. Current Opinion in Food Science 42:1–7. doi: 10.1016/j.cofs.2020.04.011.
  • Li, J., S. Yang, C. Zuo, L. Dai, Y. Guo, and G. Xie. 2020b. Applying CRISPR-Cas12a as a signal amplifier to construct biosensors for non-DNA targets in ultralow concentrations. ACS Sensors 5 (4):970–7. doi: 10.1021/acssensors.9b02305.
  • Li, R., Q. Liu, Y. Jin, and B. Li. 2019b. G-triplex/hemin DNAzyme: An ideal signal generator for isothermal exponential amplification reaction-based biosensing platform. Analytica Chimica Acta 1079:139–45. doi: 10.1016/j.aca.2019.06.002.
  • Li, S., Y. Tian, P. Jiang, Y. Lin, X. Liu, and H. Yang. 2021b. Recent advances in the application of metabolomics for food safety control and food quality analyses. Critical Reviews in Food Science and Nutrition 61 (9):1448–69. doi: 10.1080/10408398.2020.1761287.
  • Li, Y., J. Jia, S. Man, S. Ye, and L. Ma. 2023. Emerging programmable nuclease-based detection for food safety. Trends in Biotechnology 42 (2):151–5. doi: 10.1016/j.tibtech.2023.09.006.
  • Li, Y., S. Man, S. Ye, G. Liu, and L. Ma. 2022. CRISPR‐Cas‐based detection for food safety problems: Current status, challenges, and opportunities. Comprehensive Reviews in Food Science and Food Safety 21 (4):3770–98. doi: 10.1111/1541-4337.13000.
  • Li, Y. C., S. Y. Liu, F. B. Meng, D. Y. Liu, Y. Zhang, W. Wang, and J. M. Zhang. 2020c. Comparative review and the recent progress in detection technologies of meat product adulteration. Comprehensive Reviews in Food Science and Food Safety 19 (4):2256–96. doi: 10.1111/1541-4337.12579.
  • Liu, M., C-c Li, X. Luo, F. Ma, and C-y Zhang. 2020. 5-Hydroxymethylcytosine glucosylation-triggered helicase-dependent amplification-based fluorescent biosensor for sensitive detection of β-glucosyltransferase with zero background signal. Analytical Chemistry 92 (24):16307–13. doi: 10.1021/acs.analchem.0c04382.
  • Liu, M., Z. Yang, B. Li, and J. Du. 2021. Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chemistry 339:128059. doi: 10.1016/j.foodchem.2020.128059.
  • Lobato, I. M., and C. K. O’Sullivan. 2018. Recombinase polymerase amplification: Basics, applications and recent advances. Trends in Analytical Chemistry: TRAC 98:19–35. doi: 10.1016/j.trac.2017.10.015.
  • Lv, X., W. Cao, H. Zhang, Y. Zhang, L. Shi, and L. Ye. 2022. CE–RAA–CRISPR assay: A rapid and sensitive method for detecting vibrio parahaemolyticus in seafood. Foods (Basel, Switzerland) 11 (12):1681. doi: 10.3390/foods11121681.
  • Ma, L., D. Liao, Z. Zhao, J. Kou, H. Guo, X. Xiong, and S. Man. 2023. Sensitive small molecule aptasensing based on hybridization chain reaction and CRISPR/Cas12a using a portable 3D-printed visualizer. ACS Sensors 8 (3):1076–84. doi: 10.1021/acssensors.2c02097.
  • Ma, L., L. Xie, Q. Wu, L. Yang, Y. Zhou, Y. Cui, Y. Zhang, B. Jiao, C. Wang, and Y. He. 2024. Integrating CRISPR-Cas12a and rolling circle-amplified G-quadruplex for naked-eye fluorescent “off-on” detection of citrus Alternaria. International Journal of Biological Macromolecules 262 (Pt 2):129983. doi: 10.1016/j.ijbiomac.2024.129983.
  • Makarova, K. S., Y. I. Wolf, J. Iranzo, S. A. Shmakov, O. S. Alkhnbashi, S. J. J. Brouns, E. Charpentier, D. Cheng, D. H. Haft, P. Horvath, et al. 2020. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nature Reviews. Microbiology 18 (2):67–83. doi: 10.1038/s41579-019-0299-x.
  • Manges, A. R., H. M. Geum, A. Guo, T. J. Edens, C. D. Fibke, and J. D. Pitout. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clinical Microbiology Reviews 32 (3):10–1128. doi: 10.1128/CMR.00135-18.
  • Mao, Z., R. Chen, X. Wang, Z. Zhou, Y. Peng, S. Li, D. Han, S. Li, Y. Wang, T. Han, et al. 2022. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends in Food Science & Technology 122:211–22. doi: 10.1016/j.tifs.2022.02.030.
  • Marqués, M.-C., J. Sánchez-Vicente, R. Ruiz, R. Montagud-Martínez, R. Márquez-Costa, G. Gómez, A. Carbonell, J.-A. Daròs, and G. Rodrigo. 2022. Diagnostics of infections produced by the plant viruses TMV, TEV, and PVX with CRISPR-Cas12 and CRISPR-Cas13. ACS Synthetic Biology 11 (7):2384–93. doi: 10.1021/acssynbio.2c00090.
  • Mulder, A. C., E. Franz, S. de Rijk, M. A. J. Versluis, C. Coipan, R. Buij, G. Müskens, M. Koene, R. Pijnacker, B. Duim, et al. 2020. Tracing the animal sources of surface water contamination with Campylobacter jejuni and Campylobacter coli. Water Research 187:116421. doi: 10.1016/j.watres.2020.116421.
  • Muñoz, H. E., C. T. Riche, J. E. Kong, M. van Zee, O. B. Garner, A. Ozcan, and D. Di Carlo. 2020. Fractal LAMP: Label-free analysis of fractal precipitate for digital loop-mediated isothermal nucleic acid amplification. ACS Sensors 5 (2):385–94. doi: 10.1021/acssensors.9b01974.
  • Nayak, R., and P. Waterson. 2019. Global food safety as a complex adaptive system: Key concepts and future prospects. Trends in Food Science & Technology 91:409–25. doi: 10.1016/j.tifs.2019.07.040.
  • Neng, J., Q. Zhang, and P. Sun. 2020. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics 167:112480. doi: 10.1016/j.bios.2020.112480.
  • Netzler, N. E., D. Enosi Tuipulotu, and P. A. White. 2019. Norovirus antivirals: Where are we now? Medicinal Research Reviews 39 (3):860–86. doi: 10.1002/med.21545.
  • Pan, R., J. Liu, P. Wang, D. Wu, J. Chen, Y. Wu, and G. Li. 2022. Ultrasensitive CRISPR/Cas12a-driven SERS biosensor for on-site nucleic acid detection and its application to milk authenticity testing. Journal of Agricultural and Food Chemistry 70 (14):4484–91. doi: 10.1021/acs.jafc.1c08262.
  • Peng, Y., P. Xue, R. Wang, H. Shang, B. Yao, Z. Zheng, C. Yan, W. Chen, and J. Xu. 2024. Engineering of an adaptive tandem CRISPR/Cas12a molecular amplifier permits robust analysis of Vibrio parahaemolyticus. Talanta 266 (Pt 2):125061. doi: 10.1016/j.talanta.2023.125061.
  • Port, F., M. Starostecka, and M. Boutros. 2020. Multiplexed conditional genome editing with Cas12a in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 117 (37):22890–9. doi: 10.1073/pnas.2004655117.
  • Pumford, E. A., J. Lu, I. Spaczai, M. E. Prasetyo, E. M. Zheng, H. Zhang, and D. T. Kamei. 2020. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosensors & Bioelectronics 170:112674. doi: 10.1016/j.bios.2020.112674.
  • Qian, C., R. Wang, H. Wu, F. Ji, and J. Wu. 2019. Nicking enzyme-assisted amplification (NEAA) technology and its applications: A review. Analytica Chimica Acta 1050:1–15. doi: 10.1016/j.aca.2018.10.054.
  • Qian, C., H. Wu, Y. Shi, J. Wu, and H. Chen. 2020. Dehydrated CRISPR-mediated DNA analysis for visualized animal-borne virus sensing in the unprocessed blood sample. Sensors and Actuators B: Chemical 305:127440. doi: 10.1016/j.snb.2019.127440.
  • Qian, J., T. M. Ferguson, D. N. Shinde, A. J. Ramírez-Borrero, A. Hintze, C. Adami, and A. Niemz. 2012. Sequence dependence of isothermal DNA amplification via EXPAR. Nucleic Acids Research 40 (11):e87-e87–e87. doi: 10.1093/nar/gks230.
  • Qian, S., Y. Chen, C. Peng, X. Wang, H. Wu, Y. Che, H. Wang, J. Xu, and J. Wu. 2022. Dipstick-based rapid nucleic acids purification and CRISPR/Cas12a-mediated isothermal amplification for visual detection of African swine fever virus. Talanta 242:123294. doi: 10.1016/j.talanta.2022.123294.
  • Qian, W., J. Huang, X. Wang, T. Wang, and Y. Li. 2021. CRISPR-Cas12a combined with reverse transcription recombinase polymerase amplification for sensitive and specific detection of human norovirus genotype GII. 4. Virology 564:26–32. doi: 10.1016/j.virol.2021.09.008.
  • Qiao, J., Z. Zhao, Y. Li, M. Lu, S. Man, S. Ye, Q. Zhang, and L. Ma. 2023. Recent advances of food safety detection by nucleic acid isothermal amplification integrated with CRISPR/Cas. Critical Reviews in Food Science and Nutrition 1–22. doi: 10.1080/10408398.2023.2246558.
  • Qiu, M., X.-M. Zhou, and L. Liu. 2022. Improved strategies for CRISPR-Cas12-based nucleic acids detection. Journal of Analysis and Testing 6 (1):44–52. doi: 10.1007/s41664-022-00212-4.
  • Reynolds, D., and M. Kollef. 2021. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs 81 (18):2117–31. doi: 10.1007/s40265-021-01635-6.
  • Richardson, J. R., V. Fitsanakis, R. H. Westerink, and A. G. Kanthasamy. 2019. Neurotoxicity of pesticides. Acta Neuropathologica 138 (3):343–62. doi: 10.1007/s00401-019-02033-9.
  • Ruan, H., Y. Huang, B. Yue, Y. Zhang, J. Lv, K. Miao, D. Zhang, J. Luo, and M. Yang. 2023. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 22 (6):4758–85. doi: 10.1111/1541-4337.13242.
  • Ruan, H., Q. Lu, J. Wu, J. Qin, M. Sui, X. Sun, Y. Shi, J. Luo, and M. Yang. 2022. Hepatotoxicity of food-borne mycotoxins: Molecular mechanism, anti-hepatotoxic medicines and target prediction. Critical Reviews in Food Science and Nutrition 62 (9):2281–308. doi: 10.1080/10408398.2021.1960794.
  • Ruccolo, S., G. Brito, M. Christensen, T. Itoh, K. Mattern, K. Stone, N. A. Strotman, and A. C. Sun. 2022. Electrochemical recycling of adenosine triphosphate in biocatalytic reaction cascades. Journal of the American Chemical Society 144 (49):22582–8. doi: 10.1021/jacs.2c08955.
  • Safarkhani, M., B. Farasati Far, S.-H. Kim, P. Makvandi, M.-K. Park, Y. Huh, and N. Rabiee. 2024. Advances and challenges of sensing in water using CRISPR-Cas technology. ACS Biomaterials Science & Engineering. doi: 10.1021/acsbiomaterials.3c01689.
  • Schlech, W. F.III, 2019. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiology Spectrum 7 (3):10–1128. doi: 10.1128/microbiolspec.GPP3-0014-2018.
  • Shalaby, K., M. Aouida, and O. El-Agnaf. 2020. Tissue-specific delivery of CRISPR therapeutics: Strategies and mechanisms of non-viral vectors. International Journal of Molecular Sciences 21 (19):7353. doi: 10.3390/ijms21197353.
  • Shang, H., Y. Peng, L. Yao, Z. Zheng, H. Li, W. Chen, and J. Xu. 2022. Self-customized multichannel exponential amplifications regulate powered monitoring of terminal deoxynucleotidyl transferase activity. Analytical Chemistry 94 (32):11401–8. doi: 10.1021/acs.analchem.2c02427.
  • Shang, J., Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, and F. Li. 2020a. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117 (21):11727–34. doi: 10.1073/pnas.2003138117.
  • Shang, Y., J. Sun, Y. Ye, J. Zhang, Y. Zhang, and X. Sun. 2020b. Loop-mediated isothermal amplification-based microfluidic chip for pathogen detection. Critical Reviews in Food Science and Nutrition 60 (2):201–24. doi: 10.1080/10408398.2018.1518897.
  • Shao, B., H. Li, J. Shen, and Y. Wu. 2019. Nontargeted detection methods for food safety and integrity. Annual Review of Food Science and Technology 10 (1):429–55. doi: 10.1146/annurev-food-032818-121233.
  • Shen, J., Z. Chen, R. Xie, J. Li, C. Liu, Y. He, X. Ma, H. Yang, and Z. Xie. 2023. CRISPR/Cas12a-assisted isothermal amplification for rapid and specific diagnosis of respiratory virus on an microfluidic platform. Biosensors & Bioelectronics 237:115523. doi: 10.1016/j.bios.2023.115523.
  • Sohrabi, H., M. R. Majidi, P. Khaki, A. Jahanban‐Esfahlan, M. de la Guardia, and A. Mokhtarzadeh. 2022. State of the art: Lateral flow assays toward the point‐of‐care foodborne pathogenic bacteria detection in food samples. Comprehensive Reviews in Food Science and Food Safety 21 (2):1868–912. doi: 10.1111/1541-4337.12913.
  • Swarts, D. C., and M. Jinek. 2019. Mechanistic insights into the cis-and trans-acting DNase activities of Cas12a. Molecular Cell 73 (3):589–600.e4. doi: 10.1016/j.molcel.2018.11.021.
  • Takaya, A., T. Yamamoto, and K. Tokoyoda. 2020. Humoral immunity vs. Salmonella. Frontiers in Immunology 10:3155. doi: 10.3389/fimmu.2019.03155.
  • Tang, Y., W. Wei, Y. Liu, and S. Liu. 2021. Fluorescent assay of FEN1 activity with nicking enzyme-assisted signal amplification based on ZIF-8 for imaging in living cells. Analytical Chemistry 93 (11):4960–6. doi: 10.1021/acs.analchem.0c05473.
  • Tao, D., X. Xiao, X. Lan, B. Xu, Y. Wang, E. M. Khazalwa, W. Pan, J. Ruan, Y. Jiang, X. Liu, et al. 2022. An inexpensive CRISPR-based point-of-care test for the identification of meat species and meat products. Genes 13 (5):912. doi: 10.3390/genes13050912.
  • Tomar, S., B. Lavickova, and C. Guiducci. 2022. Recombinase polymerase amplification in minimally buffered conditions. Biosensors & Bioelectronics 198:113802. doi: 10.1016/j.bios.2021.113802.
  • van Dongen, J. E., J. T. Berendsen, R. D. Steenbergen, R. M. Wolthuis, J. C. Eijkel, and L. I. Segerink. 2020. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. Biosensors & Bioelectronics 166:112445. doi: 10.1016/j.bios.2020.112445.
  • Wang, D., C. Zhang, B. Wang, B. Li, Q. Wang, D. Liu, H. Wang, Y. Zhou, L. Shi, F. Lan, et al. 2019. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning. Nature Communications 10 (1):4284. doi: 10.1038/s41467-019-12281-8.
  • Wang, J., Y. Wang, X. Hu, Q. Yang, Y. Chen, W. Jiang, X. Liu, H. Liu, and H. Zeng. 2022. The development of RPA and CRISPR-Cas12a based immunoassay strip for sensitive detection of genetically modified crops. Food Control 139:109048. doi: 10.1016/j.foodcont.2022.109048.
  • Wang, Q., T. Zhou, D. Xue, H. Yang, Z. Sui, X. Yuan, and J. Xu. 2024. An allosteric palindromic hairpin probe based dual-mode interactive strand displacement amplification enables robust miRNA biosensing. Chemical Communications (Cambridge, England) 60 (21):2910–3. doi: 10.1039/D3CC06265A.
  • Wang, R., R. Chen, C. Qian, Y. Pang, J. Wu, and F. Li. 2021. Ultrafast visual nucleic acid detection with CRISPR/Cas12a and rapid PCR in single capillary. Sensors and Actuators B: Chemical 326:128618. doi: 10.1016/j.snb.2020.128618.
  • Wei, S., G. Chen, X. Jia, X. Mao, T. Chen, D. Mao, W. Zhang, and W. Xiong. 2020. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Analytica Chimica Acta 1095:179–84. doi: 10.1016/j.aca.2019.10.020.
  • Williams, M. A., J. O’Grady, B. Ball, J. Carlsson, E. de Eyto, P. McGinnity, E. Jennings, F. Regan, and A. Parle‐McDermott. 2019. The application of CRISPR‐Cas for single species identification from environmental DNA. Molecular Ecology Resources 19 (5):1106–14. doi: 10.1111/1755-0998.13045.
  • Wu, H., X. Chen, M. Zhang, X. Wang, Y. Chen, C. Qian, J. Wu, and J. Xu. 2021. Versatile detection with CRISPR/Cas system from applications to challenges. TrAC: Trends in Analytical Chemistry 135:116150. doi: 10.1016/j.trac.2020.116150.
  • Wu, Y., J. Liu, H-t Li, T. Zhang, Y. Dong, S. Deng, Y. Lv, Q. He, and R. Deng. 2022. CRISPR-Cas system meets DNA barcoding: Development of a universal nucleic acid test for food authentication. Sensors and Actuators B: Chemical 353:131138. doi: 10.1016/j.snb.2021.131138.
  • Xia, X., B. Ma, T. Zhang, Y. Lu, M. R. Khan, Y. Hu, C. Lei, S. Deng, Q. He, G. He, et al. 2021. G-Quadruplex-Probing CRISPR-Cas12 assay for label-free analysis of foodborne pathogens and their colonization in vivo. ACS Sensors 6 (9):3295–302. doi: 10.1021/acssensors.1c01061.
  • Xia, X., H. Yang, J. Cao, J. Zhang, Q. He, and R. Deng. 2022. Isothermal nucleic acid amplification for food safety analysis. TrAC: Trends in Analytical Chemistry 153:116641. doi: 10.1016/j.trac.2022.116641.
  • Xia, Y., R. Rao, M. Xiong, B. He, B. Zheng, Y. Jia, Y. Li, and Y. Yang. 2024. CRISPR-powered strategies for amplification-free diagnostics of infectious diseases. Analytical Chemistry. doi: 10.1021/acs.analchem.3c04363.
  • Xie, M., F. Zhao, Y. Zhang, Y. Xiong, and S. Han. 2022. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control 131:108399. doi: 10.1016/j.foodcont.2021.108399.
  • Xu, J., X. Zhang, C. Yan, P. Qin, L. Yao, Q. Wang, and W. Chen. 2021a. Trigging isothermal circular amplification-based tuning of rigorous fluorescence quenching into complete restoration on a multivalent aptamer probe enables ultrasensitive detection of Salmonella. Analytical Chemistry 94 (2):1357–64. doi: 10.1021/acs.analchem.1c04638.
  • Xu, L., J. Duan, J. Chen, S. Ding, and W. Cheng. 2021b. Recent advances in rolling circle amplification-based biosensing strategies – A review. Analytica Chimica Acta 1148:238187. doi: 10.1016/j.aca.2020.12.062.
  • Xu, X., Y. Su, Y. Zhang, X. Wang, H. Tian, X. Ma, H. Chu, and W. Xu. 2021c. Novel rolling circle amplification biosensors for food-borne microorganism detection. TrAC: Trends in Analytical Chemistry 141:116293. doi: 10.1016/j.trac.2021.116293.
  • Yan, C., J. Cui, L. Huang, B. Du, L. Chen, G. Xue, S. Li, W. Zhang, L. Zhao, Y. Sun, et al. 2020. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases 26 (6):773–9. doi: 10.1016/j.cmi.2020.04.001.
  • Yan, C., G. Shi, and J. Chen. 2022. Fluorescent detection of two pesticides based on CRISPR-Cas12a and its application for the construction of four molecular logic gates. Journal of Agricultural and Food Chemistry 70 (39):12700–7. doi: 10.1021/acs.jafc.2c04548.
  • Yang, C., X. Pei, Y. Wu, L. Yan, Y. Yan, Y. Song, N. M. Coyle, J. Martinez-Urtaza, C. Quince, Q. Hu, et al. 2019. Recent mixing of vibrio parahaemolyticus populations. ISME Journal 13 (10):2578–88. doi: 10.1038/s41396-019-0461-5.
  • Yang, T., J. Li, D. Zhang, X. Cheng, J. Li, X. Huang, S. Ding, B. Z. Tang, and W. Cheng. 2022. Pre-folded G-quadruplex as a tunable reporter to facilitate CRISPR/Cas12a-based visual nucleic acid diagnosis. ACS Sensors 7 (12):3710–9. doi: 10.1021/acssensors.2c01391.
  • Yang, Y., G. Li, D. Wu, J. Liu, X. Li, P. Luo, N. Hu, H. Wang, and Y. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–52. doi: 10.1016/j.tifs.2019.12.021.
  • Zetsche, B., J. S. Gootenberg, O. O. Abudayyeh, I. M. Slaymaker, K. S. Makarova, P. Essletzbichler, S. E. Volz, J. Joung, J. van der Oost, A. Regev, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163 (3):759–71. doi: 10.1016/j.cell.2015.09.038.
  • Zhang, C., Z. Cai, Z. Zhou, M. Li, W. Hong, W. Zhou, D. Yu, P. Wei, J. He, Y. Wang, et al. 2023a. CASMART, a one-step CRISPR Cas12a-mediated isothermal amplification for rapid and high-resolution digital detection of rare mutant alleles. Biosensors & Bioelectronics 222:114956. doi: 10.1016/j.bios.2022.114956.
  • Zhang, C., L. Huang, H. Pu, and D.-W. Sun. 2021a. Magnetic surface-enhanced Raman scattering (MagSERS) biosensors for microbial food safety: Fundamentals and applications. Trends in Food Science & Technology 113:366–81. doi: 10.1016/j.tifs.2021.05.007.
  • Zhang, L., H. Jiang, Z. Zhu, J. Liu, and B. Li. 2022. Integrating CRISPR/Cas within isothermal amplification for point-of-care assay of nucleic acid. Talanta 243:123388. doi: 10.1016/j.talanta.2022.123388.
  • Zhang, M., X. Xue, H. Gong, B. Liu, and L. Ye. 2021b. Double isothermal amplification and CRISPR-cas12a for sensitive detection of citrinin. ACS Food Science & Technology 1 (10):1997–2005. doi: 10.1021/acsfoodscitech.1c00321.
  • Zhang, X., Y. Peng, L. Yao, H. Shang, Z. Zheng, W. Chen, and J. Xu. 2023b. Self-assembly of multivalent aptamer-tethered DNA monolayers dedicated to a fluorescence polarization-responsive circular isothermal strand displacement amplification for Salmonella assay. Analytical Chemistry 95 (4):2570–8. doi: 10.1021/acs.analchem.2c05448.
  • Zhang, X., D. Wu, X. Zhou, Y. Yu, J. Liu, N. Hu, H. Wang, G. Li, and Y. Wu. 2019. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC: Trends in Analytical Chemistry 121:115668. doi: 10.1016/j.trac.2019.115668.
  • Zhang, Y-m., Y. Zhang, and K. Xie. 2020. Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice. Molecular Breeding 40 (1):1–12. doi: 10.1007/s11032-019-1092-2.
  • Zhang, Y., M. Chen, C. Liu, J. Chen, X. Luo, Y. Xue, Q. Liang, L. Zhou, Y. Tao, M. Li, et al. 2021c. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sensors and Actuators. B, Chemical 345:130411. doi: 10.1016/j.snb.2021.130411.
  • Zhao, G., J. Wang, C. Yao, P. Xie, X. Li, Z. Xu, Y. Xian, H. Lei, and X. Shen. 2022. Alkaline lysis-recombinase polymerase amplification combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. Food Chemistry 383:132318. doi: 10.1016/j.foodchem.2022.132318.
  • Zheng, S., Q. Yang, H. Yang, Y. Zhang, W. Guo, and W. Zhang. 2023. An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food. Food Control. 146:109528. doi: 10.1016/j.foodcont.2022.109528.
  • Zhou, Y., and Z. Wang. 2018. Food hazards and their detection-a review. Chinese Journal of Bioprocess Engineering 16 (2):24–30.
  • Zhu, X., H. Yang, M. Wang, M. Wu, M. R. Khan, A. Luo, S. Deng, R. Busquets, G. He, and R. Deng. 2021. Label-free detection of transgenic crops using an isothermal amplification reporting CRISPR/Cas12 assay. ACS Synthetic Biology 11 (1):317–24. doi: 10.1021/acssynbio.1c00428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.