204
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances in enzymatic modification techniques to improve the quality of flour-based fried foods

, , , , , , ORCID Icon & show all

References

  • Ahmad, Z., M. S. Butt, A. Ahmed, M. Riaz, S. M. Sabir, U. Farooq, and F. U. Rehman. 2014. Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes. Journal of Food Science and Technology 51 (10):2445–53. doi: 10.1007/s13197-012-0734-8.[Mismatch]
  • Al-Asmar, A., C. V. L. Giosafatto, L. Panzella, and L. Mariniello. 2019. The effect of transglutaminase to improve the quality of either traditional or pectin-coated falafel (fried middle eastern food). Coatings 9 (5):331. doi: 10.3390/coatings9050331.
  • Al-Asmar, A., C. V. L. Giosafatto, M. Sabbah, and L. Mariniello. 2020. Hydrocolloid-based coatings with nanoparticles and transglutaminase crosslinker as innovative strategy to produce healthier fried Kobbah. Foods (Basel, Switzerland) 9 (6):698. doi: 10.3390/foods9060698.
  • Aladedunye, F., K. Niehaus, H. Bednarz, U. Thiyam-Hollander, E. Fehling, and B. Matthäus. 2015. Enzymatic lipophilization of phenolic extract from rowanberry (Sorbus aucuparia) and evaluation of antioxidative activity in edible oil. LWT - Food Science and Technology 60 (1):56–62. doi: 10.1016/j.lwt.2014.08.008.
  • Alam, S., R. Ahmad, K. Pranaw, P. Mishra, and S. K. Khare. 2018. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. Bioresource Technology 269:121–6. doi: 10.1016/j.biortech.2018.08.095.
  • Alam, S., T. Nagpal, R. Singhal, and S. K. Khare. 2021. Immobilization of L-asparaginase on magnetic nanoparticles: Kinetics and functional characterization and applications. Bioresource Technology 339:125599. doi: 10.1016/j.biortech.2021.125599.
  • Bilal, M., and H. M. N. Iqbal. 2020. State-of-the-art strategies and ­applied perspectives of enzyme biocatalysis in food sector - current status and future trends. Critical Reviews in Food Science and Nutrition 60 (12):2052–66. doi: 10.1080/10408398.2019.1627284.
  • Cao, Y. F., L. J. Jiang, W. J. Suo, Y. X. Deng, M. Zhang, S. Dong, P. Guo, S. F. Chen, and H. J. Li. 2021. Influence of emulsifiers and enzymes on dough rheological properties and quality characteristics of steamed bread enriched with potato pulp. Food Chemistry 360:130015. doi: 10.1016/j.foodchem.2021.130015.
  • Chang, C., G. C. Wu, H. Zhang, Q. Z. Jin, and X. G. Wang. 2020. Deep-fried flavor: Characteristics, formation mechanisms, and influencing factors. Critical Reviews in Food Science and Nutrition 60 (9):1496–514. doi: 10.1080/10408398.2019.1575792.
  • Chao, C., S. Q. Huang, J. L. Yu, L. Copeland, S. Wang, and S. J. Wang. 2020. Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: A dynamic structural analysis. Carbohydrate Polymers 244:116464. doi: 10.1016/j.carbpol.2020.116464.
  • Chen, L., D. J. McClements, H. Zhang, Z. Zhang, Z. Jin, and Y. J. Tian. 2019. Impact of amylose content on structural changes and oil ­absorption of fried maize starches. Food Chemistry 287:28–37. doi: 10.1016/j.foodchem.2019.02.083.
  • Cho, I. H., and D. G. Peterson. 2013. Chemistry of bread aroma: A review (vol 19, pg 575, 2010). Food Science and Biotechnology 22 (5):1– doi: 10.1007/s10068-013-0240-4.
  • Choy, A.-L., J. G. Hughes, and D. M. Small. 2010. The effects of microbial transglutaminase, sodium stearoyl lactylate and water on the quality of instant fried noodles. Food Chemistry 122 (4):957–64. doi: 10.1016/j.foodchem.2009.10.009.
  • Chu, B. S., H. M. Ghazali, O. M. Lai, Y. B. C. Man, S. Yusof, and M. S. A. Yusoff. 2001. Performance of a lipase-catalyzed transesterified palm kernel olein and palm stearin blend in frying banana chips. Food Chemistry 74 (1):21–33. doi: 10.1016/s0308-8146(00)00334-4.
  • Corrado, M., P. Zafeiriou, J. H. Ahn-Jarvis, G. M. Savva, C. H. Edwards, and B. A. Hazard. 2023. Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocolloids 135:108139. doi: 10.1016/j.foodhyd.2022.108139.
  • Dai, Y. X., and C. Tyl. 2021. A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. Journal of Food Science 86 (5):1583–98. doi: 10.1111/1750-3841.15713.
  • Dan, L., Z. Yakun, F. Teng, W. Yong, L. Byung-Hoo, S. Jae-Hoon, X. Baocai, L. Zhiyao, and L. Xiaolei. 2019. Effects of Streptococcus thermophilus GtfB enzyme on dough rheology, bread quality and starch digestibility. Food Hydrocolloids 96:134–9. doi: 10.1016/j.foodhyd.2019.05.009.
  • Debnath, S., R. Ravi, and B. R. Lokesh. 2011. Optimisation of lipase-catalysed interesterification reaction for modulating rheological and heat transfer properties of frying oil. Food Chemistry 129 (4):1444–52. doi: 10.1016/j.foodchem.2011.05.103.
  • Dourado, C., C. A. Pinto, S. C. Cunha, S. Casal, and J. A. Saraiva. 2020. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology. Innovative Food Science & Emerging Technologies 60:102310. doi: 10.1016/j.ifset.2020.102310.
  • Fairlie, W., J. Edwards, D. Mather, and H. Kuchel. 2023. End-use quality of wheat affected by late maturity α-amylase. Journal of Cereal Science 109:103610. doi: 10.1016/j.jcs.2022.103610.
  • Flander, L., U. Holopainen, K. Kruus, and J. Buchert. 2011. Effects of tyrosinase and laccase on oat proteins and quality parameters of gluten-free oat breads. Journal of Agricultural and Food Chemistry 59 (15):8385–90. doi: 10.1021/jf200872r.
  • Gao, K., J. J. Rao, and B. C. Chen. 2022. Unraveling the mechanism by which high intensity ultrasound improves the solubility of commercial pea protein isolates. Food Hydrocolloids 131:107823. doi: 10.1016/j.foodhyd.2022.107823.
  • Guo, W. T., X. F. Yang, Y. S. Ji, B. Hu, W. G. Li, X. Y. Zhong, S. T. Jiang, and Z. Zheng. 2023. Effects of transglutaminase and glucose oxidase on the properties of frozen dough: Water distribution, rheological properties, and microstructure. Journal of Cereal Science 111:103689. doi: 10.1016/j.jcs.2023.103689.
  • Gerits, L. R., B. Pareyt, and J. A. Delcour. 2014. A lipase based ­approach for studying the role of wheat lipids in bread making. Food Chemistry 156:190–6. doi: 10.1016/j.foodchem.2014.01.107.
  • Gerits, L. R., B. Pareyt, H. G. Masure, and J. A. Delcour. 2015. A lipase based approach to understand the role of wheat endogenous lipids in bread crumb firmness evolution during storage. LWT - Food Science and Technology 64 (2):874–80. doi: 10.1016/j.lwt.2015.06.055.
  • Gruczynska, E., R. Przybylski, and F. Aladedunye. 2015. Performance of structured lipids incorporating selected phenolic and ascorbic acids. Food Chemistry 173:778–83. doi: 10.1016/j.foodchem.2014.10.122.
  • Gu, M. M., T. T. Hong, Y. S. Ma, J. Z. Xi, Q. Y. Zhao, D. Xu, Y. M. Jin, F. F. Wu, and X. M. Xu. 2022. Effects of a commercial peptidase on rheology, microstructure, gluten properties of wheat dough and bread quality. LWT 160:113266. doi: 10.1016/j.lwt.2022.113266.
  • He, S., C. Franco, and W. Zhang. 2015. Fish Protein Hydrolysates: Application in Deep-Fried Food and Food Safety Analysis. Journal of Food Science 80 (1):E108–E115. doi: 10.1111/1750-3841.12684.
  • He, S., Y. Zhang, C. Q. Gu, Y. X. Wu, M. A. Farooq, D. J. Young, J. W. C. Wong, K. Chang, B. Tian, A. Kumari, et al. 2022. Impact of ­different processing techniques on reduction in oil content in deep-fried donuts when using kombucha cellulose hydrolysates. Frontiers in Sustainable Food Systems 6:997097. doi: 10.3389/fsufs.2022.997097.
  • Hemalatha, M. S., U. Rao, K. Leelavathi, and P. V. Salimath. 2010. Influence of amylases and xylanase on chemical, sensory, amylograph properties and microstructure of chapati. LWT - Food Science and Technology 43 (9):1394–402. doi: 10.1016/j.lwt.2010.04.020.
  • Harati, H., F. Bekes, K. Howell, S. Noonan, C. Florides, J. Beasley, D. Diepeveen, and R. Appels. 2020. Signatures for torque variation in wheat dough structure are affected by enzymatic treatments and heating. Food Chemistry 316:126357. doi: 10.1016/j.foodchem.2020.126357.
  • Hu, X., Z. Li, F. Wang, H. Mu, L. Guo, J. Xiao, Y. Liu, and X. Li. 2022. Formation of starch-lipid complexes during the deep-frying process and its effects on lipid oxidation. Foods (Basel, Switzerland) 11 (19):3083. doi: 10.3390/foods11193083.
  • Huang, Z., C. S. Brennan, H. Zheng, M. S. Mohan, L. Stipkovits, W. Liu, D. Kulasiri, W. Guan, H. Zhao, and J. Liu. 2020. The effects of fungal lipase-treated milk lipids on bread making. Lwt 128:109455. doi: 10.1016/j.lwt.2020.109455.
  • Ignat, A., L. Manzocco, N. P. Brunton, M. C. Nicoli, and J. G. Lyng. 2015. The effect of pulsed electric field pre-treatments prior to deep-fat frying on quality aspects of potato fries. Innovative Food Science & Emerging Technologies 29:65–9. doi: 10.1016/j.ifset.2014.07.003.
  • Janssen, F., A. G. B. Wouters, Y. Meeus, P. Moldenaers, J. Vermant, and J. A. Delcour. 2020. The role of non-starch polysaccharides in determining the air-water interfacial properties of wheat, rye, and oat dough liquor constituents. Food Hydrocolloids 105:105771. doi: 10.1016/j.foodhyd.2020.105771.
  • Jeon, S., J. Lim, G. E. Inglett, and S. Lee. 2013. Effect of enzymatic treatments on the rheological and oil-resisting properties of wheat flour-based frying batters. Journal of Food Engineering 115 (2):215–9. doi: 10.1016/j.jfoodeng.2012.10.015.
  • Khan, A., S. Siddiqui, U. U. Rahman, H. Ali, M. Saba, F. A. Azhar, M. M. U. Rehman, A. A. Shah, M. Badshah, F. Hasan, et al. 2020. Physicochemical properties of enzymatically prepared resistant starch from maize flour and its use in cookies formulation. International Journal of Food Properties 23 (1):549–69. doi: 10.1080/10942912.2020.1742736.
  • Kim, H. J., and S. H. Yoo. 2020. Effects of combined α-Amylase and endo-xylanase treatments on the properties of fresh and frozen doughs and final breads. Polymers 12 (6):1349. doi: 10.3390/polym12061349.
  • Krishnan, V., D. Mondal, B. Thomas, A. Singh, and S. Praveen. 2021. Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review. International Journal of Biological Macromolecules 182:626–38. doi: 10.1016/j.ijbiomac.2021.04.030.
  • Lee, S. H., W. Y. Huang, J. Hwang, H. Yoon, W. Heo, J. Hong, M. J. Kim, C.-S. Kang, B. K. Han, and Y. J. Kim. 2024. Characteristics of amylose-lipid complex prepared from pullulanase-treated rice and wheat flour. Food Science and Biotechnology 33 (5):1113–22. doi: 10.1007/s10068-023-01411-0.
  • Li, M., Zhu, K. X. Guo, X. N. Brijs, K. Zhou, H. M, and Safety, F. 2014. Natural additives in wheat-based pasta and noodle products: Opportunities for enhanced nutritional and functional properties. Comprehensive Reviews in Food Science and Food Safety 13 (4):347–57. doi: 10.1111/1541-4337.12066.
  • Li, W., Y. Yu, S. Gong, W. Zhang, X. Gu, J. Wu, and Z. Wang. 2021. Effects of endogenous and exogenous corn protein and its hydrolysates on the structural change and starch digestibility of fried corn starch. International Journal of Food Science & Technology 56 (6):2732–41. doi: 10.1111/ijfs.14904.
  • Li, X., J. Pei, T. Fei, J. Zhao, Y. Wang, and D. Li. 2019b. Production of slowly digestible corn starch using hyperthermophilic Staphylothermu marinus amylopullulanase in Bacillu subtilis. Food Chemistry 277:1–5. doi: 10.1016/j.foodchem.2018.10.092.
  • Liberty, J. T., J. Dehghannya, and M. O. Ngadi. 2019. Effective strategies for reduction of oil content in deep-fat fried foods: A review. Trends in Food Science & Technology 92:172–83. doi: 10.1016/j.tifs.2019.07.050.
  • Lisińska, G., A. Tajner-Czopek, and L. Kalum. 2007. The effects of enzymes on fat content and texture of French fries. Food Chemistry 102 (4):1055–60. doi: 10.1016/j.foodchem.2006.06.042.
  • Liu, G., Z. M. Wang, N. Du, Y. Zhang, Z. C. Wei, X. J. Tang, L. Zhao, C. Li, Y. Y. Deng, and M. W. Zhang. 2022. Recombinant rice quiescin sulfhydryl oxidase strengthens the gluten structure through thiol/disulfide exchange and hydrogen peroxide oxidation. Journal of Agricultural and Food Chemistry 70 (29):9106–16. doi: 10.1021/acs.jafc.2c01652.
  • Liu, L. Y., Yang, W. Cui, S. W. Jiang, Z. J. Chen, Q. Qian, H. F. Wang, L, and Zhou, S. M. 2018. Effects of pentosanase and glucose oxidase on the composition, rheology and microstructure of whole wheat dough. Food Hydrocolloids. 84:545–51. doi: 10.1016/j.foodhyd.2018.06.034.
  • Liu, W. J., M. Brennan, D. W. Tu, and C. Brennan. 2023. Influence of α-amylase, xylanase and cellulase on the rheological properties of bread dough enriched with oat bran. Scientific Reports 13 (1):4534. doi: 10.1038/s41598-023-31591-y.
  • Liu, W. J., M. A. Brennan, L. Serventi, and C. S. Brennan. 2017. Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chemistry 234:93–102. doi: 10.1016/j.foodchem.2017.04.160.
  • Liu, Y., J. W. Li, Y. J. Cheng, and Y. F. Liu. 2019. Effect of frying oils’ fatty acid profile on quality, free radical and volatiles over deep-frying process: A comparative study using chemometrics. Lwt 101:331–41. doi: 10.1016/j.lwt.2018.11.033.
  • Luo, S., S. Xiong, X. Li, X. Hu, J. Ye, and C. Liu. 2023. Impact of starch-lipid complexes on oil absorption of starch and its mechanism. Journal of the Science of Food and Agriculture 103 (1):83–91. doi: 10.1002/jsfa.12114.
  • Ma, M., T. Mu, H. Sun, and L. Zhou. 2022. Evaluation of texture, retrogradation enthalpy, water mobility, and anti-staling effects of ­enzymes and hydrocolloids in potato steamed bread. Food Chemistry 368:130686. doi: 10.1016/j.foodchem.2021.130686.
  • Manhivi, V. E., E. O. Amonsou, and T. Kudanga. 2018. Laccase-mediated crosslinking of gluten-free amadumbe flour improves rheological properties. Food Chemistry 264:157–63. doi: 10.1016/j.foodchem.2018.05.017.
  • Marciniak-Lukasiak, K., A. Zbikowska, M. Kupiec, M. Brzezinska, I. Szymanska, and P. Lukasiak. 2021. The influence of rice protein, hemp protein and transglutaminase addition on the quality of instant fried noodles. Applied Sciences 11 (19):9070. doi: 10.3390/app11199070.
  • Marquez, G. R., P. Di Pierro, M. Esposito, L. Mariniello, and R. Porta. 2014. Application of transglutaminase-crosslinked whey protein/pectin films as water barrier coatings in fried and baked foods. Food and Bioprocess Technology 7 (2):447–55. doi: 10.1007/s11947-012-1045-9.
  • Martínez-Pineda, M., C. Yagüe-Ruiz, and A. Vercet. 2020. How batter formulation can modify fried tempura-battered zucchini chemical and sensory characteristics? Foods (Basel, Switzerland) 9 (5):626. doi: 10.3390/foods9050626.
  • Melis, S., W. R. M. Morales, and J. A. Delcour. 2019. Lipases in wheat flour bread making: Importance of an appropriate balance between wheat endogenous lipids and their enzymatically released hydrolysis products. Food Chemistry 298:125002. doi: 10.1016/j.foodchem.2019.125002.
  • Moayedallaie, S., M. Mirzaei, and J. Paterson. 2010. Bread improvers: Comparison of a range of lipases with a traditional emulsifier. Food Chemistry 122 (3):495–9. doi: 10.1016/j.foodchem.2009.10.033.
  • Németh, R., D. Bender, E. Jaksics, M. Calicchio, B. Langó, S. D’Amico, K. Török, R. Schoenlechner, and S. Tömösközi. 2019. Investigation of the effect of pentosan addition and enzyme treatment on the rheological properties of millet flour based model dough systems. Food Hydrocolloids. 94:381–90. doi: 10.1016/j.foodhyd.2019.03.036.
  • Niu, M., L. C. Xiong, B. J. Zhang, C. H. Jia, and S. M. Zhao. 2018. Comparative study on protein polymerization in whole-wheat dough modified by transglutaminase and glucose oxidase. Lwt 90:323–30. doi: 10.1016/j.lwt.2017.12.046.
  • Nooshkam, M., M. Varidi, and M. Bashash. 2019. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry 275:644–60. doi: 10.1016/j.foodchem.2018.09.083.
  • Obadi, M., Y. T. Li, and B. Xu. 2022. Identifying key factors and strategies for reducing oil content in fried instant noodles. Journal of Food Science 87 (10):4329–47. doi: 10.1111/1750-3841.16301.
  • Pourmohammadi, K., and E. Abedi. 2021. Enzymatic modifications of gluten protein: Oxidative enzymes. Food Chemistry 356:129679. doi: 10.1016/j.foodchem.2021.129679.
  • Purcell, S., Y. J. Wang, and H. S. Seo. 2014. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets. Journal of Food Science 79 (5):C802–C809. doi: 10.1111/1750-3841.12442.
  • Rahim, M. S., V. Kumar, and J. Roy. 2022. Genetic dissection of quantitative traits loci identifies new genes for gelatinization parameters of starch and amylose-lipid complex (Resistant starch 5) in bread wheat. Plant Science: An International Journal of Experimental Plant Biology 325:111452. doi: 10.1016/j.plantsci.2022.111452.
  • Rebholz, G. F., K. Sebald, S. Dirndorfer, C. Dawid, T. Hofmann, and K. A. Scherf. 2021. Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. European Food Research and Technology 247 (3):695–706. doi: 10.1007/s00217-020-03657-y.
  • Reyniers, S., N. Vluymans, N. De Brier, N. Ooms, S. Matthijs, K. Brijs, and J. A. Delcour. 2020. Amylolysis as a tool to control amylose chain length and to tailor gel formation during potato-based crisp making. Food Hydrocolloids. 103:105658. doi: 10.1016/j.foodhyd.2020.105658.
  • Salgado, C. A., Aparecida dos Santos, C. I. D, and Vanetti, M. C. 2022. Microbial lipases: Propitious biocatalysts for the food industry. Food Bioscience 45:101509. doi: 10.1016/j.fbio.2021.101509.
  • Sarabhai, S., T. Tamilselvan, and P. Prabhasankar. 2021. Role of enzymes for improvement in gluten-free foxtail millet bread: It’s effect on quality, textural, rheological and pasting properties. Lwt 137:110365. doi: 10.1016/j.lwt.2020.110365.
  • Schaffarczyk, M., H. Østdal, O. Matheis, and P. Koehler. 2016. Relationships between lipase-treated wheat lipid classes and their functional effects in wheat breadmaking. Journal of Cereal Science 68:100–7. doi: 10.1016/j.jcs.2016.01.007.
  • Shahidi, F., and A. Hossain. 2022. Role of lipids in food flavor generation. Molecules (Basel, Switzerland) 27 (15):5014. doi: 10.3390/molecules27155014.
  • Shi, B., X. Guo, H. Liu, K. Jiang, L. Liu, N. Yan, M. A. Farag, and L. J. Liu. 2023. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and its gut homeostasis regulation. Food Chemistry 438:137994. doi: 10.1016/j.foodchem.2023.137994.
  • Starowicz, M., and H. Zieliński. 2019. How Maillard reaction ­influences sensorial properties (color, flavor and texture) of food products? Food Reviews International 35 (8):707–25. doi: 10.1080/87559129.2019.1600538.
  • Stemler, C. D., and K. A. Scherf. 2023. Lipases as cake batter improvers compared to a traditional emulsifier. Lwt 174:114464. doi: 10.1016/j.lwt.2023.114464.
  • Struyf, N., J. Verspreet, and C. M. Courtin. 2016. The effect of amylolytic activity and substrate availability on sugar release in non-yeasted dough. Journal of Cereal Science 69:111–8. doi: 10.1016/j.jcs.2016.02.016.
  • Struyf, N., J. Verspreet, K. J. Verstrepen, and C. M. Courtin. 2017. Investigating the impact of α-amylase, α-glucosidase and glucoamylase action on yeast-mediated bread dough fermentation and bread sugar levels. Journal of Cereal Science 75:35–44. doi: 10.1016/j.jcs.2017.03.013.
  • Sukumar, D., P. Maya, and B. R. Lokesh. 2012. Lipase-mediated interesterification of oils for improving rheological, heat transfer properties and stability during deep-fat frying. Food and Bioprocess Technology 5 (5):1630–41. doi: 10.1007/s11947-010-0485-3.
  • Tomić, J., A. Torbica, and M. Belović. 2020. Effect of non-gluten proteins and transglutaminase on dough rheological properties and quality of bread based on millet (Panicum miliaceum) flour. LWT 118:108852. doi: 10.1016/j.lwt.2019.108852.
  • Tozatti, P., E. J. Hopkins, C. Briggs, P. Hucl, and M. T. Nickerson. 2019. Effect of chemical oxidizers and enzymatic treatments on the rheology of dough prepared from five different wheat cultivars. Journal of Cereal Science 90:102806. doi: 10.1016/j.jcs.2019.102806.
  • Wang, J., A. Li, J. Hu, B. Zhang, J. Liu, Y. Zhang, and S. J. Wang. 2022. Effect of frying process on nutritional property, physicochemical quality, and in vitro digestibility of commercial instant noodles. Frontiers in Nutrition 9:823432. doi: 10.3389/fnut.2022.823432.
  • Wang, X. C., L. Chen, D. J. McClements, and Z. Y. Jin. 2023. Recent advances in crispness retention of microwaveable frozen pre-fried foods. Trends in Food Science & Technology 132:54–64. doi: 10.1016/j.tifs.2022.12.014.
  • Wang, X. C., D. J. McClements, Z. L. Xu, M. Meng, C. Qiu, J. Long, Z. Y. Jin, and L. Chen. 2023. Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture. Trends in Food Science & Technology 138:297–309. doi: 10.1016/j.tifs.2023.06.012.
  • Woo, S. H., J. S. Kim, H. M. Jeong, Y. J. Shin, J. S. Hong, H. D. Choi, and J. H. Shim. 2021. Development of freeze-thaw stable starch through enzymatic modification. Foods (Basel, Switzerland) 10 (10):2269. doi: 10.3390/foods10102269.
  • Xiao, F., X. Zhang, M. Niu, X. Q. Xiang, Y. D. Chang, Z. Z. Zhao, L. C. Xiong, S. M. Zhao, J. H. Rong, C. E. Tang, et al. 2021. Gluten development and water distribution in bread dough influenced by bran components and glucose oxidase. LWT 137:110427. doi: 10.1016/j.lwt.2020.110427.
  • Xie, D., D. Guo, Z. Guo, X. Hu, S. Luo, and C. Liu. 2022. Reduction of oil uptake of fried food by coatings: A review. International Journal of Food Science & Technology 57 (6):3268–77. doi: 10.1111/ijfs.15266.
  • Xu, D., W. Y. Guan, F. F. Wu, Y. M. Jin, N. Yang, Z. Y. Jin, and X. M. Xu. 2022. Improvement of baked wheat chips quality by protease-mediated enzymatic hydrolysis of wheat flour. LWT 157:113043. doi: 10.1016/j.lwt.2021.113043.
  • Xu, L. R., X. Mei, J. R. Chang, G. C. Wu, H. Zhang, Q. Z. Jin, and X. G. Wang. 2022. Comparative characterization of key odorants of French fries and oils at the break-in, optimum, and degrading frying stages. Food Chemistry 368:130581. doi: 10.1016/j.foodchem.2021.130581.
  • Yang, L., J. Cai, H. Qian, Y. Li, H. Zhang, X. Qi, L. Wang, and G. Cao. 2022. Effect of cyclodextrin glucosyltransferase extracted from Bacillus xiaoxiensis on wheat dough and bread properties. Frontiers in Nutrition 9:1026678. doi: 10.3389/fnut.2022.1026678.
  • Yang, M., N. N. Li, A. X. Wang, L. T. Tong, L. L. Wang, Y. Yue, J. S. Yao, S. M. Zhou, and L. Y. Liu. 2021. Evaluation of rheological properties, microstructure and water mobility in buns dough enriched in aleurone flour modified by enzyme combinations. International Journal of Food Science & Technology 56 (11):5913–22. doi: 10.1111/ijfs.15170.
  • Yang, Y., Li, T. Li, Y. Qian, H. Qi, X. Zhang, H. Wang, and L. J. 2020. Understanding the molecular weight distribution, in vitro digestibility and rheological properties of the deep-fried wheat starch. Food Chemistry 331:127315. doi: 10.1016/j.foodchem.2020.127315.
  • Yang, Y., L. Wang, Y. Li, H. F. Qian, H. Zhang, G. C. Wu, and X. G. Qi. 2019. Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment. Food Chemistry 283:287–93. doi: 10.1016/j.foodchem.2019.01.034.
  • Zhang, Q., A. S. M. Saleh, J. Chen, and Q. Shen. 2012. Chemical alterations taken place during deep-fat frying based on certain reaction products: A review. Chemistry and Physics of Lipids 165 (6):662–81. doi: 10.1016/j.chemphyslip.2012.07.002.
  • Zhang, Y., T. T. Zhang, D. M. Fan, J. W. Li, and L. P. Fan. 2018. The description of oil absorption behavior of potato chips during the frying. Lwt 96:119–26. doi: 10.1016/j.lwt.2018.04.094.
  • Zhao, F., Y. Li, C. Li, X. Ban, Z. Gu, and Z. Li. 2022. Exo-type, endo-type and debranching amylolytic enzymes regulate breadmaking and storage qualities of gluten-free bread. Carbohydrate Polymers 298:120124. doi: 10.1016/j.carbpol.2022.120124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.