134
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Progress in using cross-linking technologies to increase the thermal stability of colloidal delivery systems

, , , , ORCID Icon & ORCID Icon

References

  • Adjonu, R., G. Doran, P. Torley, and S. Agboola. 2023. Stability of whey protein bioactive peptide-stabilised nanoemulsions: Effect of pH, ions, heating and freeze-thawing. International Journal of Food Science & Technology 58 (4):1787–94. doi: 10.1111/ijfs.16292.
  • Ahari, H., and S. P. Soufiani. 2021. Smart and active food packaging: Insights in novel food packaging. Frontiers in Microbiology 12:657233. doi: 10.3389/fmicb.2021.657233.
  • Amin, S. F. M., R. Karim, Y. A. Yusof, and K. Muhammad. 2023. Effects of metal concentration, ph, and temperature on the chlorophyll derivative content, green colour, and antioxidant activity of amaranth (Amaranthus viridis) purees. Applied Sciences 13 (3):1344. doi: 10.3390/app13031344.
  • Azarikia, F., B-c Wu, S. Abbasi, and D. J. McClements. 2015. Stabilization of biopolymer microgels formed by electrostatic complexation: Influence of enzyme (laccase) cross-linking on pH, thermal, and mechanical stability. Food Research International 78:18–26. doi: 10.1016/j.foodres.2015.11.013.
  • Ba, C., Y. Fu, F. Niu, M. Wang, B. Jin, Z. Li, G. Chen, H. Zhang, and X. Li. 2020. Effects of environmental stresses on physiochemical stability of β-carotene in zein-carboxymethyl chitosan-tea polyphenols ternary delivery system. Food Chemistry 311:125878. doi: 10.1016/j.foodchem.2019.125878.
  • Chen, K., M. Zhang, A. S. Mujumdar, and M. Wang. 2023. Quinoa protein isolate-gum Arabic coacervates cross-linked with sodium tripolyphosphate: Characterization, environmental stability, and Sichuan pepper essential oil microencapsulation. Food Chemistry 404 (Pt A):134536. doi: 10.1016/j.foodchem.2022.134536.
  • Chen, T., Y. F. Shen, D. Wu, R. Wu, J. Sheng, X. Feng, and X. Z. Tang. 2022. Biodegradable films of chitosan and tea polyphenols catalyzed by laccase and their physical and antioxidant activities. Food Bioscience 46:101513. doi: 10.1016/j.fbio.2021.101513.
  • Chen, Y., W. F. Wang, W. Q. Zhang, D. M. Lan, and Y. H. Wang. 2023. Co-encapsulation of probiotics with acylglycerols in gelatin-gum Arabic complex coacervates: Stability evaluation under adverse conditions. International Journal of Biological Macromolecules 242 (Pt 3):124913. doi: 10.1016/j.ijbiomac.2023.124913.
  • Cheng, H., X. Chang, H. Luo, H. Tang, L. Chen, and L. Liang. 2023. Co-encapsulation of resveratrol in fish oil microcapsules optimally stabilized by enzyme-crosslinked whey protein with gum Arabic. Colloids and Surfaces. B, Biointerfaces 223:113172. doi: 10.1016/j.colsurfb.2023.113172.
  • Cheng, S., W. H. Wang, Y. Li, G. X. Gao, K. Zhang, J. Y. Zhou, and Z. N. Wu. 2019. Cross-linking and film-forming properties of transglutaminase-modified collagen fibers tailored by denaturation temperature. Food Chemistry 271:527–35. doi: 10.1016/j.foodchem.2018.07.223.
  • da Silva, T. M., C. de Deus, B. D. Fonseca, E. J. Lopes, A. J. Cichoski, E. A. Esmerino, C. D. da Silva, E. I. Muller, E. M. M. Flores, and C. R. de Menezes. 2019. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Research International 125:108577. doi: 10.1016/j.foodres.2019.108577.
  • da Silva, T. M., V. S. Pinto, V. R. F. Soares, D. Marotz, A. J. Cichoski, L. Q. Zepka, E. J. Lopes, C. D. da Silva, and C. R. de Menezes. 2021. Viability of microencapsulated Lactobacillus acidophilus by complex coacervation associated with enzymatic crosslinking under application in different fruit juices. Food Research International 141:110190. doi: 10.1016/j.foodres.2021.110190.
  • Dai, H. J., M. S. Xia, X. Feng, L. Ma, H. Chen, H. K. Zhu, Y. Yu, H. X. Wang, and Y. H. Zhang. 2024. Designing gelatin microgels by moderate transglutaminase crosslinking: Improvement in interface properties. Food Hydrocolloids. 149:109572. doi: 10.1016/j.foodhyd.2023.109572.
  • Dai, H., Y. Li, L. Ma, Y. Yu, H. Zhu, H. Wang, T. Liu, X. Feng, M. Tang, W. Hu, et al. 2020. Fabrication of cross-linked β-lactoglobulin nanoparticles as effective stabilizers for pickering high internal phase emulsions. Food Hydrocolloids. 109:106151. doi: 10.1016/j.foodhyd.2020.106151.
  • Fan, Y. T., G. H. Li, J. Yi, and H. M. Huang. 2022. Structural characteristics, emulsifying and foaming properties of laccase-crosslinked bovine α-lactalbumin mediated by caffeic acid. Food Hydrocolloids. 133:107948. doi: 10.1016/j.foodhyd.2022.107948.
  • Glusac, J., S. Isaschar-Ovdat, B. Kukavica, and A. Fishman. 2017. Oil-in-water emulsions stabilized by tyrosinase-crosslinked potato protein. Food Research International (Ottawa, Ont.) 100 (Pt 1):407–15. doi: 10.1016/j.foodres.2017.07.034.
  • Gui, Y. F., J. H. Li, Y. Zhu, and L. Guo. 2020. Roles of four enzyme crosslinks on structural, thermal and gel properties of potato proteins. LWT 123:109116. doi: 10.1016/j.lwt.2020.109116.
  • Guo, Q., S. Li, G. Du, H. Chen, X. Yan, S. Chang, T. Yue, and Y. Yuan. 2022. Formulation and characterization of microcapsules encapsulating carvacrol using complex coacervation crosslinked with tannic acid. LWT 165:113683. doi: 10.1016/j.lwt.2022.113683.
  • Guo, X. H., D. Wu, B. Zhou, Z. Chen, B. J. Li, S. S. Wang, Y. Q. Pei, B. Li, and H. S. Liang. 2021. Reinforced pickering emulsions stabilized by desalted duck egg white nanogels with Ca2 + as binding agents. Food Hydrocolloids. 121:106974. doi: 10.1016/j.foodhyd.2021.106974.
  • Hashemi, B., A. Madadlou, and M. Salami. 2017. Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking. Food Chemistry 237:23–9. doi: 10.1016/j.foodchem.2017.05.077.
  • Hu, J. L., L. Ma, X. Q. Liu, H. Y. Li, M. H. Zhang, Z. M. Jiang, and J. C. Hou. 2022. Superfine grinding pretreatment enhances emulsifying, gel properties and in vitro digestibility of laccase-treated α-Lactalbumin. LWT 157:113082. doi: 10.1016/j.lwt.2022.113082.
  • Hu, R. H., D. J. Dong, J. L. Hu, and H. Liu. 2023. Improved viability of probiotics encapsulated in soybean protein isolate matrix microcapsules by coacervation and cross-linking modification. Food Hydrocolloids. 138:108457. doi: 10.1016/j.foodhyd.2023.108457.
  • Hu, S., T. Wang, M. L. Fernandez, and Y. Luo. 2016. Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin. Food Hydrocolloids. 61:821–31. doi: 10.1016/j.foodhyd.2016.07.006.
  • Khalesi, H., W. Lu, K. Nishinari, and Y. P. Fang. 2020. New insights into food hydrogels with reinforced mechanical properties: A review on innovative strategies. Advances in Colloid and Interface Science 285:102278. doi: 10.1016/j.cis.2020.102278.
  • Kim, M. S., and Y. H. Chang. 2023. Physicochemical, structural and in vitro gastrointestinal tract release properties of? -carrageenan/sodium caseinate synbiotic microgels produced by double-crosslinking with calcium ions and transglutaminase. Food Chemistry 414:135707. doi: 10.1016/j.foodchem.2023.135707.
  • Li, D. Y., J. R. Li, S. W. Wang, Q. M. Wang, and W. Teng. 2023. Dually crosslinked copper-poly(tannic acid) nanoparticles with microenvironment-responsiveness for infected wound treatment. Advanced Healthcare Materials 12 (17):e2203063. doi: 10.1002/adhm.202203063.
  • Li, Q., P. Dong, and L. Li. 2022. Preparation and characterization of Mg-doped calcium phosphate-coated phycocyanin nanoparticles for improving the thermal stability of phycocyanin. Foods 11 (4):503. doi: 10.3390/foods11040503.
  • Li, R., J. Chen, H. Li, Z. Zhang, and H. Tang. 2023. Effects of calcium ions on the particle performance of luteolin-loaded zein-gum Arabic-tea polyphenols ternary complex nanoparticles. LWT 184:115057. doi: 10.1016/j.lwt.2023.115057.
  • Li, Y. F., Z. Y. Peng, L. J. Tan, Y. H. Zhu, C. Zhao, Q. H. Zeng, G. Liu, J. J. Wang, and Y. Zhao. 2022. Structural and functional properties of soluble Antarctic krill proteins covalently modified by rutin. Food Chemistry 379:132159. doi: 10.1016/j.foodchem.2022.132159.
  • Li, Y. T., D. He, B. Li, M. N. Lund, Y. F. Xing, Y. Wang, F. X. Li, X. Cao, Y. J. Liu, X. Y. Chen, et al. 2021. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science & Technology 110:470–82. doi: 10.1016/j.tifs.2021.02.009.
  • Liang, X. P., C. C. Ma, X. J. Yan, H. H. Zeng, D. J. McClements, X. B. Liu, and F. G. Liu. 2020. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocolloids. 102:105569. doi: 10.1016/j.foodhyd.2019.105569.
  • Lin, J. W., S. J. Yu, C. Ai, T. Zhang, and X. M. Guo. 2020. Emulsion stability of sugar beet pectin increased by genipin crosslinking. Food Hydrocolloids. 101:105459. doi: 10.1016/j.foodhyd.2019.105459.
  • Lin, L., Y. L. Gu, and H. Y. Cui. 2019. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packaging and Shelf Life 19:86–93. doi: 10.1016/j.fpsl.2018.12.005.
  • Liu, F. G., C. C. Ma, Y. X. Gao, and D. J. McClements. 2017. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Comprehensive Reviews in Food Science and Food Safety 16 (1):76–95. doi: 10.1111/1541-4337.12229.
  • Liu, J., J. Yang, A. Abliz, L. Mao, F. Yuan, and Y. Gao. 2020. Influence of thermal treatment on physical, structural characteristics and stability of lactoferrin, EGCG and high methoxylated pectin aggregates. LWT 125:109221. doi: 10.1016/j.lwt.2020.109221.
  • Liu, J., Y. Zhang, S. He, A. Zhou, B. Gao, M. Yan, and L. Yu. 2021. Microbial transglutaminase-induced cross-linking of sodium caseinate as the coating stabilizer of zein nanoparticles. LWT 138:110624. doi: 10.1016/j.lwt.2020.110624.
  • Liu, L. L., S. H. Yang, L. X. Jin, C. Y. Niu, H. Liang, C. K. Chen, and Z. J. Ban. 2023. Development of controlled-release soy β-conglycinin nanoparticles containing curcumin using genipin as crosslinker. Food Bioscience 54:102826. doi: 10.1016/j.fbio.2023.102826.
  • Liu, Q., H. P. Cui, B. Muhoza, E. Duhoranimana, K. Hayat, X. M. Zhang, and C. T. Ho. 2021. Mild enzyme-induced gelation method for nanoparticle stabilization: Effect of transglutaminase and laccase cross-linking. Journal of Agricultural and Food Chemistry 69 (4):1348–58. doi: 10.1021/acs.jafc.0c05444.
  • Lu, J. X., X. J. Li, C. Qiu, D. J. McClements, A. Q. Jiao, J. P. Wang, and Z. Y. Jin. 2022. Preparation and characterization of food-grade pickering emulsions stabilized with chitosan-phytic acid-cyclodextrin nanoparticles. Foods 11 (3):450. doi: 10.3390/foods11030450.
  • Ma, K. X., F. Li, T. Zhe, X. Y. Sun, X. Y. Zhang, P. Wan, H. Na, J. N. Zhao, and L. Wang. 2024. Biopolymer films incorporated with chlorogenic acid nanoparticles for active food packaging application. Food Chemistry 435:137552. doi: 10.1016/j.foodchem.2023.137552.
  • Matsumura, Y., D. S. Lee, and T. Mori. 2000. Molecular weight distributions of α-lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydrocolloids 14 (1):49–59. doi: 10.1016/S0268-005X(99)00045-4.
  • Moussa, O., D. Tarlet, P. Massoli, and J. Bellettre. 2018. Parametric study of the micro-explosion occurrence of W/O emulsions. International Journal of Thermal Sciences 133:90–7. doi: 10.1016/j.ijthermalsci.2018.07.016.
  • Niu, F., D. Hu, F. Gu, Y. Du, B. Zhang, S. Ma, and W. Pan. 2021. Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin. Carbohydrate Polymers 271:118451. doi: 10.1016/j.carbpol.2021.118451.
  • Qiu, C., Z. H. Zhang, X. J. Li, S. Y. Sang, D. J. McClements, L. Chen, J. Long, A. Q. Jiao, X. M. Xu, and Z. Y. Jin. 2023. Co-encapsulation of curcumin and quercetin with zein/HP-beta-CD conjugates to enhance environmental resistance and antioxidant activity. NPJ Science of Food 7 (1):29. doi: 10.1038/s41538-023-00186-2.
  • Raak, N., and M. Corredig. 2022. Kinetic aspects of casein micelle cross-linking by transglutaminase at different volume fractions. Food Hydrocolloids. 128:107603. doi: 10.1016/j.foodhyd.2022.107603.
  • Ren, L. L., Y. C. Zhang, Q. Wang, J. Zhou, J. Tong, D. H. Chen, and X. G. Su. 2018. Convenient method for enhancing hydrophobicity and dispersibility of starch nanocrystals by crosslinking modification with citric acid. International Journal of Food Engineering 14 (4):20170238. doi: 10.1515/ijfe-2017-0238.
  • Ren, Y., Y. Zhu, X. Qi, H. Yan, Y. Zhao, Y. Wu, N. Zhang, Z. Ding, L. Yuan, and M. Liu. 2023. Noncovalent interaction of chlorogenic acid and/or gallocatechin gallate with β-lactoglobulin: Effect on stability and bioaccessibility of complexes and nanoparticles. LWT 175:114493. doi: 10.1016/j.lwt.2023.114493.
  • Ruzengwe, F. M., E. O. Amonsou, and T. Kudanga. 2023. Gelation profile of laccase-crosslinked Bambara groundnut (Vigna subterranea) protein isolate. Food Research International 163:112171. doi: 10.1016/j.foodres.2022.112171.
  • Sang, Z., J. Qian, J. Han, X. Deng, J. Shen, G. Li, and Y. Xie. 2020. Comparison of three water-soluble polyphosphate tripolyphosphate, phytic acid, and sodium hexametaphosphate as crosslinking agents in chitosan nanoparticle formulation. Carbohydrate Polymers 230:115577. doi: 10.1016/j.carbpol.2019.115577.
  • Sharma, H., A. Ahuja, B. Sharma, A. Kulshreshtha, A. Kadam, and D. Dutt. 2023. Vapor phase antimicrobial active packaging application of chitosan capsules containing clove essential oil for the preservation of dry cakes. Food and Bioprocess Technology 17 (3):780–90. doi: 10.1007/s11947-023-03151-9.
  • Song, Z. Y., T. C. Ma, X. J. Zhi, and B. Du. 2021. Cellulosic films reinforced by chitosan-citric complex for meat preservation: Influence of nonenzymatic browning. Carbohydrate Polymers 272:118476. doi: 10.1016/j.carbpol.2021.118476.
  • Tang, P. P., T. T. Zheng, R. M. Ran, Y. M. Xiong, and G. Y. Li. 2023. Collagen films functionalized with gallic acid in the presence of laccase for beef preservation. Food Packaging and Shelf Life 38:101100. doi: 10.1016/j.fpsl.2023.101100.
  • Tao, X., H. Shi, A. Cao, and L. Cai. 2022. Influence of polyphenol-metal ion-coated ovalbumin/sodium alginate composite nanoparticles on the encapsulation of kaempferol/tannin acid. International Journal of Biological Macromolecules 209 (Pt A):1288–97. doi: 10.1016/j.ijbiomac.2022.04.108.
  • Teng, M.-J., Y.-S. Wei, T.-G. Hu, Y. Zhang, K. Feng, M.-H. Zong, and H. Wu. 2020. Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. Journal of Food Engineering 281:109993. doi: 10.1016/j.jfoodeng.2020.109993.
  • Vasić, K., Ž. Knez, and M. Leitgeb. 2023. Transglutaminase in foods and biotechnology. International Journal of Molecular Sciences 24 (15):12402. doi: 10.3390/ijms241512402.
  • Venkatesan, R., P. Sivaprakash, I. Kim, G. E. Eldesoky, and S. C. Kim. 2023. Tannic acid as a crosslinking agent in poly(butylene adipate-co-terephthalate) composite films enhanced with carbon nanoparticles: Processing, characterization, and antimicrobial activities for food packaging. Journal of Environmental Chemical Engineering 11 (4):110194. doi: 10.1016/j.jece.2023.110194.
  • Wang, C. Y., T. Q. Li, L. Ma, T. Li, H. Y. Yu, J. C. Hou, and Z. M. Jiang. 2020. Consequences of superfine grinding treatment on structure, physicochemical and rheological properties of transglutaminase-crosslinked whey protein isolate. Food Chemistry 309:125757. doi: 10.1016/j.foodchem.2019.125757.
  • Wang, D., P. F. Lv, L. Zhang, S. Q. Yang, Y. Wei, L. K. Mao, F. Yuan, and Y. X. Gao. 2020. Enhanced physicochemical stability of β-carotene emulsions stabilized by β-lactoglobulin-ferulic acid-chitosan ternary conjugate. Journal of Agricultural and Food Chemistry 68 (31):8404–12. doi: 10.1021/acs.jafc.0c01757.
  • Wang, H., M. F. Li, F. Lin, C. R. Su, Q. Z. Zeng, D. X. Su, S. He, Q. Wang, J. L. Zhang, and Y. Yuan. 2021. Fabrication and characterization of bi-crosslinking pickering emulsions stabilized by gliadin/alginate coacervate particles. Journal of Food Engineering 291:110318. doi: 10.1016/j.jfoodeng.2020.110318.
  • Wang, L., K. Yang, X. Z. Li, X. H. Zhang, D. W. Zhang, L. N. Wang, and C. S. Lee. 2021. A double-crosslinked self-healing antibacterial hydrogel with enhanced mechanical performance for wound treatment. Acta Biomaterialia 124:139–52. doi: 10.1016/j.actbio.2021.01.038.
  • Wang, Q., W. Chen, C. Ma, S. Chen, X. Liu, and F. Liu. 2022. Enzymatic synthesis of sodium caseinate-EGCG-carboxymethyl chitosan ternary film: Structure, physical properties, antioxidant and antibacterial properties. International Journal of Biological Macromolecules 222 (Pt A):509–20. doi: 10.1016/j.ijbiomac.2022.09.138.
  • Wang, Q. M., Z. A. Rao, Y. Y. Chen, L. Jiang, X. J. Lei, J. C. Zhao, F. H. Li, L. Lei, and J. Ming. 2024. Fabrication and characterization of oleogels stabilized by metal-phenolic network coatings-decorated zein nanoparticles. Food Chemistry 430:137025. doi: 10.1016/j.foodchem.2023.137025.
  • Wang, R., and J. Zhou. 2022. Waxy maize starch nanoparticles incorporated tea polyphenols to stabilize pickering emulsion and inhibit oil oxidation. Carbohydrate Polymers 296:119991. doi: 10.1016/j.carbpol.2022.119991.
  • Wang, Y. H., Q. Liu, Y. Y. Yang, C. Qiu, A. Q. Jiao, and Z. Y. Jin. 2023. Fabrication of a double-network high internal phase emulsion gel stabilized by bacterial cellulose nanofibrils: Enhancement of heat stability and 3D printing. Food Hydrocolloids. 143:108872. doi: 10.1016/j.foodhyd.2023.108872.
  • Wei, Y., C. Li, L. Zhang, L. Dai, S. Yang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020. Influence of calcium ions on the stability, microstructure and in vitro digestion fate of zein-propylene glycol alginate-tea saponin ternary complex particles for the delivery of resveratrol. Food Hydrocolloids. 106:105886. doi: 10.1016/j.foodhyd.2020.105886.
  • Wei, Y., C. Wang, X. Liu, W. Y. Liao, L. Zhang, S. Chen, J. F. Liu, L. K. Mao, F. Yuan, and Y. X. Gao. 2021. Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein-polysaccharide-tea saponin complex nanoparticles. Food & Function 12 (3):1192–206. doi: 10.1039/d0fo02283g.
  • Wei, Y., C. Wang, X. Liu, A. Mackie, L. Zhang, J. F. Liu, L. K. Mao, F. Yuan, and Y. X. Gao. 2020. Impact of microfluidization and thermal treatment on the structure, stability and in vitro digestion of curcumin loaded zein-propylene glycol alginate complex nanoparticles. Food Research International 138 (Pt B):109817. doi: 10.1016/j.foodres.2020.109817.
  • Wei, Y., C. Wang, X. Liu, A. Mackie, M. K. Zhang, L. Dai, J. F. Liu, L. K. Mao, F. Yuan, and Y. X. Gao. 2022. Co-encapsulation of curcumin and β-carotene in pickering emulsions stabilized by complex nanoparticles: Effects of microfluidization and thermal treatment. Food Hydrocolloids. 122:107064. doi: 10.1016/j.foodhyd.2021.107064.
  • Wei, Z. H., Y. J. Cheng, J. Y. Zhu, and Q. R. Huang. 2019. Genipin-crosslinked ovotransferrin particle-stabilized pickering emulsions as delivery vehicles for hesperidin. Food Hydrocolloids. 94:561–73. doi: 10.1016/j.foodhyd.2019.04.008.
  • Wu, D., Y. L. Dai, Y. N. Huang, J. Gao, H. S. Liang, M. Eid, Q. C. Deng, and B. Zhou. 2020. Metal-phenolic network covering on zein nanoparticles as a regulator on the oil/water interface. Journal of Agricultural and Food Chemistry 68 (31):8471–82. doi: 10.1021/acs.jafc.0c02632.
  • Wu, D., B. Zhou, S. S. Wang, Y. Q. Pei, B. Li, and H. S. Liang. 2021. Pickering emulsion stabilized by metal-phenolic architectures: A straightforward in situ assembly strategy. Journal of Agricultural and Food Chemistry 69 (39):11709–19. doi: 10.1021/acs.jafc.1c02066.
  • Wu, J., F. R. Xu, Y. Wu, W. F. Xiong, M. M. Pan, N. Zhang, Q. Zhou, S. J. Wang, X. R. Ju, and L. F. Wang. 2020. Characterization and analysis of an oil-in-water emulsion stabilized by rapeseed protein isolate underpHand ionic stress. Journal of the Science of Food and Agriculture 100 (13):4734–44. doi: 10.1002/jsfa.10532.
  • Wu, T. F., C. M. Liu, and X. T. Hu. 2022. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review. Food Chemistry 372:131332. doi: 10.1016/j.foodchem.2021.131332.
  • Xu, W., D. J. McClements, X. W. Peng, Z. L. Xu, M. Meng, Y. D. Zou, G. X. Chen, Z. Y. Jin, and L. Chen. 2023. Optimization of food-grade colloidal delivery systems for thermal processing applications: A review. Critical Reviews in Food Science and Nutrition.63:1–15. doi: 10.1080/10408398.2023.2258215.
  • Yan, J., X. P. Liang, C. C. Ma, D. J. McClements, X. B. Liu, and F. G. Liu. 2021. Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids. 113:106473. doi: 10.1016/j.foodhyd.2020.106473.
  • Yan, X., Y. He, X. Bai, D. J. McClements, S. Chen, X. Liu, and F. Liu. 2022. Development and application of hydrophilic-hydrophobic dual-protein pickering emulsifiers: EGCG-modified caseinate-zein complexes. Food Research International 157:111451. doi: 10.1016/j.foodres.2022.111451.
  • Yang, S. F., L. Liu, H. Q. Chen, Y. Wei, L. Dai, J. F. Liu, F. Yuan, L. Mao, Z. G. Li, F. Chen, et al. 2021. Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles. Food Hydrocolloids. 112:106258. doi: 10.1016/j.foodhyd.2020.106258.
  • Yang, S. F., L. Dai, L. K. Mao, J. F. Liu, F. Yuan, Z. G. Li, and Y. X. Gao. 2019. Effect of sodium tripolyphosphate incorporation on physical, structural, morphological and stability characteristics of zein and gliadin nanoparticles. International Journal of Biological Macromolecules 136:653–60. doi: 10.1016/j.ijbiomac.2019.06.052.
  • Yang, Z., L. Chen, D. J. McClements, C. Qiu, C. Li, Z. Zhang, M. Miao, Y. Tian, K. Zhu, and Z. Jin. 2022. Stimulus-responsive hydrogels in food science: A review. Food Hydrocolloids. 124:107218. doi: 10.1016/j.foodhyd.2021.107218.
  • Yoshida, T., M. Tanemura, A. Shimizu, O. H. Tanaka, S. Kurokawa, K. Takahashi, and M. Hattori. 2022. Functional improvements in beta-lactoglobulin by preparing edible conjugate with microbial transglutaminase. Bioscience Biotechnology and Biochemistry 86:390–6.
  • Zare, M., K. Namratha, S. Ilyas, A. Sultana, A. Hezam, L. Sunil, M. A. Surmeneva, R. A. Surmenev, M. B. Nayan, S. Ramakrishna, et al. 2022. Emerging trends for ZnO nanoparticles and their applications in food packaging. ACS Food Science & Technology 2 (5):763–81. doi: 10.1021/acsfoodscitech.2c00043.
  • Zhang, A., Q. Cui, M. Zhou, X. Wang, and X-h Zhao. 2021. Improving freeze–thaw stability of soy protein isolate-glucosamine emulsion by transglutaminase glycosylation. Food and Bioproducts Processing 128:77–83. doi: 10.1016/j.fbp.2021.04.014.
  • Zhang, A., S. Chen, Y. Wang, X. Wang, N. Xu, and L. Jiang. 2020. Stability and in vitro digestion simulation of soy protein isolate-vitamin D3 nanocomposites. LWT 117:108647. doi: 10.1016/j.lwt.2019.108647.
  • Zhang, W. L., M. Azizi-Lalabadi, S. Jafarzadeh, and S. M. Jafari. 2023. Starch-gelatin blend films: A promising approach for high-performance degradable food packaging. Carbohydrate Polymers 320:121266. doi: 10.1016/j.carbpol.2023.121266.
  • Zhang, Z. H., M. F. Long, N. Zheng, Y. Deng, Q. Wang, T. Osire, and X. L. Xia. 2024. Microstructural, physicochemical properties, and interaction mechanism of hydrogel nanoparticles modified by high catalytic activity transglutaminase crosslinking. Food Hydrocolloids. 147:109384. doi: 10.1016/j.foodhyd.2023.109384.
  • Zhao, Q. L., X. Hong, L. P. Fan, Y. F. Liu, and J. W. Li. 2022. Solubility and emulsifying properties of perilla protein isolate: Improvement by phosphorylation in the presence of sodium tripolyphosphate and sodium trimetaphosphate. Food Chemistry 382:132252. doi: 10.1016/j.foodchem.2022.132252.
  • Zheng, J. C., N. Xiao, Y. Li, X. A. Xie, and L. Li. 2022. Free radical grafting of whey protein isolate with tea polyphenol: Synthesis and changes in structural and functional properties. LWT 153:112438. doi: 10.1016/j.lwt.2021.112438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.