123
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The application of starch-based edible film in food preservation: a comprehensive review

, ORCID Icon, , &

References

  • Abdillah, A. A., and A. L. Charles. 2021. Characterization of a natural biodegradable edible film obtained from arrowroot starch and IOTA-Carrageenan and application in food packaging. International Journal of Biological Macromolecules 191:618–26. doi: 10.1016/j.ijbiomac.2021.09.141.
  • Abera, G., B. Woldeyes, H. D. Demash, and G. Miyake. 2020. The effect of plasticizers on thermoplastic starch films developed from the indigenous Ethiopian tuber crop Anchote (Coccinia abyssinica) starch. International Journal of Biological Macromolecules 155:581–7. doi: 10.1016/j.ijbiomac.2020.03.218.
  • Acosta, S., A. Chiralt, P. Santamarina, J. Rosello, C. González-Martínez, and M. Cháfer. 2016. Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids 61:233–40. doi: 10.1016/j.foodhyd.2016.05.008.
  • Adawiyah, D. R., S. Akuzawa, T. Sasaki, and K. Kohyama. 2017. A comparison of the effects of heat moisture treatment (HMT) on rheological properties and amylopectin structure in Sago (Metroxylon sago) and Arenga (Arenga pinnata) starches. Journal of Food Science and Technology 54 (11):3404–10. doi: 10.1007/s13197-017-2787-1.
  • Agarwal, S. 2021. Major factors affecting the characteristics of starch-based biopolymer films. European Polymer Journal 160:110788. doi: 10.1016/j.eurpolymj.2021.110788.
  • Ali, B., N. A. Al-Wabel, S. Shams, A. Ahamad, S. A. Khan, and F. Anwar. 2015. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine 5 (8):601–11. doi: 10.1016/j.apjtb.2015.05.007.
  • Ali, A., A. Basit, A. Hussain, S. Sammi, A. Wali, G. Goksen, A. Muhammad, F. Faiz, M. Trif, A. Rusu, et al. 2022. Starch-based environment friendly, edible and antimicrobial films reinforced with medicinal plants. Frontiers in Nutrition 9:1066337. doi: 10.3389/fnut.2022.1066337.
  • Almario, A. A., C. G. Mogollón, and E. C. Caballero. 2019. Effect of elaboration pH on the electroactivity of cassava starch solid biopolymer electrolyte films. Rasayan Journal of Chemistry 12 (4):1766–73. doi: 10.31788/RJC.2019.1245302.
  • Almeida, T., A. Karamysheva, B. F. A. Valente, J. M. Silva, M. Braz, A. Almeida, A. J. D. Silvestre, C. Vilela, and C. S. R. Freire. 2023. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocolloids. 144:108934. doi: 10.1016/j.foodhyd.2023.108934.
  • Arayaphan, J., P. Boonsuk, and S. Chantarak. 2020. Enhancement of water barrier properties of cassava starch-based biodegradable films using silica particles. Iranian Polymer Journal 29 (9):749–57. doi: 10.1007/s13726-020-00837-1.
  • Ashaduzzaman, M., D. Saha, and M. Mamunur Rashid. 2020. Mechanical and thermal properties of self-assembled kaolin-doped starch-based environment-friendly nanocomposite films. Journal of Composites Science 4 (2):38. doi: 10.3390/jcs4020038.
  • Bagher, A., H. Baghaei, and A. Mohammadi Nafchi. 2023. Preparation and application of active bionanocomposite films based on sago starch reinforced with a combination of TiO2 nanoparticles and Penganum harmala extract for preserving chicken fillets. Polymers 15 (13):2889. doi: 10.3390/polym15132889.
  • Barbosa, T. C. M., C. V. B. Grisi, S. B. da Fonseca, B. R. L. d. A. Meireles, and A. M. T. d M. Cordeiro. 2022. Effect of active gelatin-starch film containing Syzygium cumini and Origanum vulgare extract on the preservation of lamb burgers. Meat Science 191:108844. doi: 10.1016/j.meatsci.2022.108844.
  • Bertuzzi, M. A., E. F. Castro Vidaurre, M. Armada, and J. C. Gottifredi. 2007. Water vapor permeability of edible starch-based films. Journal of Food Engineering 80 (3):972–8. doi: 10.1016/j.jfoodeng.2006.07.016.
  • Bidari, R., A. A. Abdillah, R. A. Ponce, and A. L. Charles. 2023. Characterization of biodegradable films made from taro peel (Colocasia esculenta) starch. Polymers 15 (2):338. doi: 10.3390/polym15020338.
  • Castillo, L. A., S. Farenzena, E. Pintos, M. S. Rodríguez, M. A. Villar, M. A. García, and O. V. López. 2017. Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications. Food Packaging and Shelf Life 14:128–36. doi: 10.1016/j.fpsl.2017.10.004.
  • Che Hamzah, N. H., N. Khairuddin, I. I. Muhamad, M. A. Hassan, Z. Ngaini, and S. R. Sarbini. 2022. Characterisation and colour response of smart sago starch-based packaging films incorporated with Brassica oleracea Anthocyanin. Membranes 12 (10):913. doi: 10.3390/membranes12100913.
  • Chen, C., Y. Du, G. Zuo, F. Chen, K. Liu, and L. Zhang. 2020. Effect of storage condition on the physico-chemical properties of corn–wheat starch/zein edible bilayer films. Royal Society Open Science 7 (2):191777. doi: 10.1098/rsos.191777.
  • Chen, N., H.-X. Gao, Q. He, and W.-C. Zeng. 2023. Potato starch-based film incorporated with tea polyphenols and its application in fruit packaging. Polymers 15 (3):588. doi: 10.3390/polym15030588.
  • Cheng, M., Y. Cui, X. Yan, R. Zhang, J. Wang, and X. Wang. 2022. Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts. Food Hydrocolloids. 124:107225. doi: 10.1016/j.foodhyd.2021.107225.
  • Cheng, Y., K. Liang, Y. Chen, W. Gao, X. Kang, T. Li, and B. Cui. 2023. Effect of molecular structure changes during starch gelatinization on its rheological and 3D printing properties. Food Hydrocolloids. 137:108364. doi: 10.1016/j.foodhyd.2022.108364.
  • Cheng, J., and H. Wang. 2023. Construction and application of nano ZnO/Eugenol@Yam starch/microcrystalline cellulose active antibacterial film. International Journal of Biological Macromolecules 239:124215. doi: 10.1016/j.ijbiomac.2023.124215.
  • Cheng, J., H. Wang, S. Kang, L. Xia, S. Jiang, M. Chen, and S. Jiang. 2019. An active packaging film based on yam starch with eugenol and its application for pork preservation. Food Hydrocolloids. 96:546–54. doi: 10.1016/j.foodhyd.2019.06.007.
  • Chen, J., H. Li, C. Fang, Y. Cheng, T. Tan, and H. Han. 2020. In situ synthesis and properties of Ag NPs/carboxymethyl cellulose/starch composite films for antibacterial application. Polymer Composites 41 (3):838–47. doi: 10.1002/pc.25414.
  • Chen, P., L. Yu, G. P. Simon, X. Liu, K. Dean, and L. Chen. 2011. Internal structures and phase-transitions of starch granules during gelatinization. Carbohydrate Polymers 83 (4):1975–83. doi: 10.1016/j.carbpol.2010.11.001.
  • Chinma, C. E., C. C. Ariahu, and J. S. Alakali. 2015. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. Journal of Food Science and Technology 52 (4):2380–6. doi: 10.1007/s13197-013-1227-0.
  • Chinthapalli, R., P. Skoczinski, M. Carus, W. Baltus, D. de Guzman, H. Käb, A. Raschka, and J. Ravenstijn. 2019. Biobased building blocks and polymers—Global capacities, production and trends, 2018–2023. Industrial Biotechnology 15 (4):237–41. doi: 10.1089/ind.2019.29179.rch.
  • Choi, W. S., D. Patel, and J. H. Han. 2016. Effects of pH and salts on physical and mechanical properties of pea starch films. Journal of Food Science 81 (7):E1716–E1725. doi: 10.1111/1750-3841.13342.
  • Chu, T., J. Shi, Y. Xia, H. Wang, G. Fan, and M. Yang. 2022. Development of high strength potato starch nanocomposite films with excellent UV-blocking performance: Effect of heat moisture treatment synergistic with ligninsulfonic acid. Industrial Crops and Products 187:115327. doi: 10.1016/j.indcrop.2022.115327.
  • Costa, M. S., D. P. Volanti, M. V. E. Grossmann, and C. M. L. Franco. 2018. Structural, thermal, and morphological characteristics of cassava amylodextrins. Journal of the Science of Food and Agriculture 98 (7):2751–60. doi: 10.1002/jsfa.8771.
  • Cui, C., N. Ji, Y. Wang, L. Xiong, and Q. Sun. 2021. Bioactive and intelligent starch-based films: A review. Trends in Food Science & Technology 116:854–69. doi: 10.1016/j.tifs.2021.08.024.
  • Dai, M., X. Xiong, A. Cheng, Z. Zhao, and Q. Xiao. 2023. Development of pullulan-based nanocomposite films reinforced with starch nanocrystals for the preservation of fresh beef. Journal of the Science of Food and Agriculture 103 (4):1981–93. doi: 10.1002/jsfa.12280.
  • Dai, L., J. Zhang, and F. Cheng. 2019. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. International Journal of Biological Macromolecules 132:897–905. doi: 10.1016/j.ijbiomac.2019.03.197.
  • Dash, K. K., N. A. Ali, D. Das, and D. Mohanta. 2019. Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules 139:449–58. doi: 10.1016/j.ijbiomac.2019.07.193.
  • de Carvalho, F. A. L., J. M. Lorenzo, M. Pateiro, R. Bermúdez, L. Purriños, and M. A. Trindade. 2019. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf-life storage at 2 °C. Food Research International (Ottawa, Ont.) 125:108554. doi: 10.1016/j.foodres.2019.108554.
  • De Kock, L., Z. Sadan, R. Arp, and P. Upadhyaya. 2020. A circular economy response to plastic pollution: Current policy landscape and consumer perception. South African Journal of Science 116 (5-6):1–2. doi: 10.17159/sajs.2020/8097.
  • de Oliveira, C. S., C. D. Bet, R. Z. B. Bisinella, L. H. Waiga, T. A. D. Colman, and E. Schnitzler. 2018. Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry 133 (3):1491–8. doi: 10.1007/s10973-018-7196-9.
  • Delgado, J. F., M. A. Peltzer, J. R. Wagner, and A. G. Salvay. 2018. Hydration and water vapour transport properties in yeast biomass-based films: A study of plasticizer content and thickness effects. European Polymer Journal 99:9–17. doi: 10.1016/j.eurpolymj.2017.11.051.
  • Dhumal, C. V., J. Ahmed, N. Bandara, and P. Sarkar. 2019. Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packaging and Shelf Life 21:100380. doi: 10.1016/j.fpsl.2019.100380.
  • Ding, J., Y. Hao, B. Liu, Y. Chen, and L. Li. 2023. Development and application of poly (lactic acid)/poly (butylene adipate-co-terephthalate)/thermoplastic starch film containing salicylic acid for banana preservation. Foods (Basel, Switzerland) 12 (18):3397. doi: 10.3390/foods12183397.
  • Domene-López, D., J. C. García-Quesada, I. Martin-Gullon, and M. G. Montalbán. 2019. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers 11 (7):1084. doi: 10.3390/polym11071084.
  • dos Santos Caetano, K., N. Almeida Lopes, T. M. Haas Costa, A. Brandelli, E. Rodrigues, S. Hickmann Flôres, and F. Cladera-Olivera. 2018. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life 16:138–47. doi: 10.1016/j.fpsl.2018.03.006.
  • Dularia, C., A. Sinhmar, R. Thory, A. K. Pathera, and V. Nain. 2019. Development of starch nanoparticles based composite films from non-conventional source – Water chestnut (Trapa bispinosa). International Journal of Biological Macromolecules 136:1161–8. doi: 10.1016/j.ijbiomac.2019.06.169.
  • Dupuis, J. H., and Q. Liu. 2019. Potato starch: A review of physicochemical, functional and nutritional properties. American Journal of Potato Research 96 (2):127–38. doi: 10.1007/s12230-018-09696-2.
  • Dutta, D., and N. Sit. 2022. Comparison of properties of films prepared from potato starch modified by annealing and heat–moisture treatment. Starch – Stärke 74 (11–12):2200110. doi: 10.1002/star.202200110.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. Ismarrubie Zahari. 2018. Preparation and characterization of cassava starch/peel composite film. Polymer Composites 39 (5):1704–15. doi: 10.1002/pc.24121.
  • Eskandarabadi, S. M., M. Mahmoudian, K. R. Farah, A. Abdali, E. Nozad, and M. Enayati. 2019. Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food Packaging and Shelf Life 22:100389. doi: 10.1016/j.fpsl.2019.100389.
  • Fan, X., B. Zhang, X. Zhang, Z. Ma, and X. Feng. 2023. Incorporating Portulaca oleracea extract endows the chitosan-starch film with antioxidant capacity for chilled meat preservation. Food Chemistry: X 18:100662. doi: 10.1016/j.fochx.2023.100662.
  • Fonseca, L. M., A. K. Henkes, G. P. Bruni, L. A. N. Viana, C. M.de Moura, W. H. Flores, and A. F. Galio. 2018. Fabrication and characterization of native and oxidized potato starch biodegradable films. Food Biophysics 13 (2):163–74. doi: 10.1007/s11483-018-9522-y.
  • Fonseca-García, A., C. Caicedo, E. J. Jiménez-Regalado, G. Morales, and R. Y. Aguirre-Loredo. 2021. Effects of poloxamer content and storage time of biodegradable starch-chitosan films on its thermal, structural, mechanical, and morphological properties. Polymers 13 (14):2341. doi: 10.3390/polym13142341.
  • Freitas, P. A. V., C. González-Martínez, and A. Chiralt. 2023. Antioxidant starch composite films containing rice straw extract and cellulose fibres. Food Chemistry 400:134073. doi: 10.1016/j.foodchem.2022.134073.
  • Gao, W., P. Liu, X. Li, L. Qiu, H. Hou, and B. Cui. 2019. The co-plasticization effects of glycerol and small molecular sugars on starch-based nanocomposite films prepared by extrusion blowing. International Journal of Biological Macromolecules 133:1175–81. doi: 10.1016/j.ijbiomac.2019.04.193.
  • Gao, Q., J. Qi, Y. Tan, and J. Ju. 2024. Antifungal mechanism of Angelica sinensis essential oil against Penicillium roqueforti and its application in extending the shelf life of bread. International Journal of Food Microbiology 408:110427. doi: 10.1016/j.ijfoodmicro.2023.110427.
  • Gao, S., X. Zhai, W. Wang, R. Zhang, H. Hou, and L. T. Lim. 2022. Material properties and antimicrobial activities of starch/PBAT composite films incorporated with ε-polylysine hydrochloride prepared by extrusion blowing. Food Packaging and Shelf Life 32:100831. doi: 10.1016/j.fpsl.2022.100831.
  • Garcia, P. S., A. M. Baron, F. Yamashita, S. Mali, D. Eiras, and M. V. E. Grossmann. 2018. Compatibilization of starch/poly (butylene adipate-co-terephthalate) blown films using itaconic acid and sodium hypophosphite. Journal of Applied Polymer Science 135 (33):46629. doi: 10.1002/app.46629.
  • Ghanbarzadeh, B., H. Almasi, and A. A. Entezami. 2011. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products 33 (1):229–35. doi: 10.1016/j.indcrop.2010.10.016.
  • Ghizdareanu, A.-I., D. Pasarin, A. Banu, A. Ionita, C. E. Enascuta, and A. Vlaicu. 2023. Accelerated shelf-life and stability testing of hydrolyzed corn starch films. Polymers 15 (4):889. doi: 10.3390/polym15040889.
  • Goiana, M. L., E. S. de Brito, E. G. Alves Filho, E. d C. Miguel, F. A. N. Fernandes, H. M. C. d Azeredo, and M. d F. Rosa. 2021. Corn starch-based films treated by dielectric barrier discharge plasma. International Journal of Biological Macromolecules 183:2009–16. doi: 10.1016/j.ijbiomac.2021.05.210.
  • Gómez-Aldapa, C. A., G. Velazquez, M. C. Gutierrez, E. Rangel-Vargas, J. Castro-Rosas, and R. Y. Aguirre-Loredo. 2020. Effect of polyvinyl alcohol on the physicochemical properties of biodegradable starch films. Materials Chemistry and Physics 239:122027. doi: 10.1016/j.matchemphys.2019.122027.
  • González-Seligra, P., L. Guz, O. Ochoa-Yepes, S. Goyanes, and L. Famá. 2017. Influence of extrusion process conditions on starch film morphology. LWT 84:520–8. doi: 10.1016/j.lwt.2017.06.027.
  • Guadalupe, F.-C., R.-L I. Israel, O.-V C. Enrique, and H.-C. Paola. 2023. Effect of edible films’ application on the quality characteristics of Manchego-type cheese during storage. Food and Bioprocess Technology 16 (12):2910–20. doi: 10.1007/s11947-023-03120-2.
  • Güllich, L. M. D., M. Rosseto, C. V. T. Rigueto, B. Biduski, L. C. Gutkoski, and A. Dettmer. 2023. Film properties of wheat starch modified by annealing and oxidation. Polymer Bulletin 80 (12):12881–93. doi: 10.1007/s00289-023-04690-z.
  • Guo, Z., Q. Gou, L. Yang, Q-l Yu, and L. Han. 2022. Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry 370:130992. doi: 10.1016/j.foodchem.2021.130992.
  • Han, H., J. Hou, N. Yang, Y. Zhang, H. Chen, Z. Zhang, Y. Shen, S. Huang, and S. Guo. 2019. Insight on the changes of cassava and potato starch granules during gelatinization. International Journal of Biological Macromolecules 126:37–43. doi: 10.1016/j.ijbiomac.2018.12.201.
  • Hashem, A. H., M. E. El-Naggar, A. M. Abdelaziz, S. Abdelbary, Y. R. Hassan, and M. S. Hasanin. 2023. Bio-based antimicrobial food packaging films based on hydroxypropyl starch/polyvinyl alcohol loaded with the biosynthesized zinc oxide nanoparticles. International Journal of Biological Macromolecules 249:126011. doi: 10.1016/j.ijbiomac.2023.126011.
  • Hazrati, K. Z., S. M. Sapuan, M. Y. M. Zuhri, and R. Jumaidin. 2021. Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. International Journal of Biological Macromolecules 185:219–28. doi: 10.1016/j.ijbiomac.2021.06.099.
  • Herniou, C., J. R. Mendieta, and T. J. Gutiérrez. 2019. Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids. 89:67–79. doi: 10.1016/j.foodhyd.2018.10.024.
  • Hirpara, N. J., and M. N. Dabhi. 2021. A review on effect of amylose/amylopectin, lipid and relative humidity on starch based biodegradable films. International Journal of Current Microbiology and Applied Sciences 10 (4):500–31.
  • Homthawornchoo, W., P. Kaewprachu, S. Pinijsuwan, O. Romruen, and S. Rawdkuen. 2022. Enhancing the UV-light barrier, thermal stability, tensile strength, and antimicrobial properties of rice starch–gelatin composite films through the incorporation of zinc oxide nanoparticles. Polymers 14 (12):2505. doi: 10.3390/polym14122505.
  • Huang, J., W. Wu, B. Niu, X. Fang, H. Chen, Y. Wang, and H. Gao. 2023. Characterization of Zizania latifolia polysaccharide-corn starch composite films and their application in the postharvest preservation of strawberries. LWT 173:114332. doi: 10.1016/j.lwt.2022.114332.
  • Issa, A., S. A. Ibrahim, and R. Tahergorabi. 2017. Impact of sweet potato starch-based nanocomposite films activated with thyme essential oil on the shelf-life of baby spinach leaves. Foods (Basel, Switzerland) 6 (6):43. doi: 10.3390/foods6060043.
  • Istiqomah, A., W. E. Prasetyo, M. Firdaus, and T. Kusumaningsih. 2022. Valorisation of lemongrass essential oils onto chitosan-starch film for sustainable active packaging: Greatly enhanced antibacterial and antioxidant activity. International Journal of Biological Macromolecules 210:669–81. doi: 10.1016/j.ijbiomac.2022.04.223.
  • Jha, P., K. Dharmalingam, T. Nishizu, N. Katsuno, and R. Anandalakshmi. 2020. Effect of amylose–amylopectin ratios on physical, mechanical, and thermal properties of starch-based bionanocomposite films incorporated with CMC and nanoclay. Starch – Stärke 72 (1-2):1900121. doi: 10.1002/star.201900121.
  • Jiang, H., W. Zhang, and W. Jiang. 2023. Effects of purple passion fruit peel extracts on characteristics of Pouteria campechiana seed starch films and the application in discernible detection of shrimp freshness. Food Hydrocolloids 138:108477. doi: 10.1016/j.foodhyd.2023.108477.
  • Kang, L., Q. Liang, A. Rashid, A. Qayum, Z. Chi, X. Ren, and H. Ma. 2023. Ultrasound-assisted development and characterization of novel polyphenol-loaded pullulan/trehalose composite films for fruit preservation. Ultrasonics Sonochemistry 92:106242. doi: 10.1016/j.ultsonch.2022.106242.
  • Kasmi, N., N. M. Ainali, E. Agapiou, L. Papadopoulos, G. Z. Papageorgiou, and D. N. Bikiaris. 2019. Novel high Tg fully biobased poly (hexamethylene-co-isosorbide-2,5-furan dicarboxylate) copolyesters: Synergistic effect of isosorbide insertion on thermal performance enhancement. Polymer Degradation and Stability 169:108983. doi: 10.1016/j.polymdegradstab.2019.108983.
  • Kawahara, M., K. Mizutani, S. Suzuki, S. Kitamura, H. Fukada, T. Yui, and K. Ogawa. 2003. Dependence of the mechanical properties of a pullulan film on the preparation temperature. Bioscience, Biotechnology, and Biochemistry 67 (4):893–5. doi: 10.1271/bbb.67.893.
  • Khalid, S., L. Yu, M. Feng, L. Meng, Y. Bai, A. Ali, H. Liu, and L. Chen. 2018. Development and characterization of biodegradable antimicrobial packaging films based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life 18:71–9. doi: 10.1016/j.fpsl.2018.08.008.
  • Khatun, A., D. L. E. Waters, and L. Liu. 2019. A review of rice starch digestibility: Effect of composition and heat-moisture processing. Starch – Stärke 71 (9–10):1900090. doi: 10.1002/star.201900090.
  • Khurshid, S., S. Arif, T. M. Ali, H. M. Iqbal, M. Shaikh, H. Khurshid, Q-u-A Akber, and S. Yousaf. 2022. Effect of silver nanoparticles prepared from Saraca asoca leaf extract on morphological, functional, mechanical, and antibacterial properties of rice starch films. Starch – Stärke 74 (5-6):2100228. doi: 10.1002/star.202100228.
  • Kim, B.-K., H.-S. Lee, H.-S. Yang, and K.-B. Song. 2021. Development of Ginkgo (Ginkgo biloba) nut starch films containing Cinnamon (Cinnamomum zeylanicum) leaf essential oil. Molecules (Basel, Switzerland) 26 (20):6114. doi: 10.3390/molecules26206114.
  • Kim, S., and K. B. Song. 2018. Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. International Journal of Food Science & Technology 53 (6):1549–57. doi: 10.1111/ijfs.13737.
  • Koch, K. 2018. Chapter 19 – Starch-based films. In M. Sjöö & L. Nilsson (Eds.), Starch in Food, 2nd ed., 747–67. Cambridge: Woodhead Publishing.
  • Koch, K., T. Gillgren, M. Stading, and R. Andersson. 2010. Mechanical and structural properties of solution-cast high-amylose maize starch films. International Journal of Biological Macromolecules 46 (1):13–9. doi: 10.1016/j.ijbiomac.2009.10.002.
  • Koch, K., D. Johansson, K. Johansson, and K. Svegmark. 2014. Material properties and molecular aspects of highly acetylated starch-based films. Journal of Renewable Materials 2 (2):134–44. doi: 10.7569/JRM.2014.634110.
  • Kowalczyk, D., W. Kazimierczak, E. Zięba, M. Mężyńska, M. Basiura-Cembala, S. Lisiecki, M. Karaś, and B. Baraniak. 2018. Ascorbic acid- and sodium ascorbate-loaded oxidized potato starch films: Comparative evaluation of physicochemical and antioxidant properties. Carbohydrate Polymers 181:317–26. doi: 10.1016/j.carbpol.2017.10.063.
  • Kumar, Nishant, Jaishankar Prasad, Ajay Yadav, Ashutosh Upadhyay, Shruti Shukla, Anka Trajkovska Petkoska, Shweta Suri, Małgorzata Gniewosz, Marek Kieliszek, and Pratibha Neeraj. 2023. Recent trends in edible packaging for food applications—Perspective for the future. Food Engineering Reviews 15(4), 718–747. doi: 10.1007/s12393-023-09358-y.
  • La Fuente, C. I. A., A. T. de Souza, C. C. Tadini, and P. E. D. Augusto. 2019. Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules 141:713–20. doi: 10.1016/j.ijbiomac.2019.09.028.
  • Lai, D. S., A. F. Osman, S. A. Adnan, I. Ibrahim, M. N. Ahmad Salimi, and A. A. Alrashdi. 2022. Effective aging inhibition of the thermoplastic corn starch films through the use of green hybrid filler. Polymers 14 (13):2567. doi: 10.3390/polym14132567.
  • Leandro, G. C., D. A. Laroque, A. R. Monteiro, B. A. M. Carciofi, and G. A. Valencia. 2023. Current status and perspectives of starch powders modified by cold plasma: A review. Journal of Polymers and the Environment 32 (2):510–23. doi: 10.1007/s10924-023-03027-1.
  • Lee, S. W., N. S. Said, and N. M. Sarbon. 2021. The effects of zinc oxide nanoparticles on the physical, mechanical and antimicrobial properties of chicken skin gelatin/tapioca starch composite films in food packaging. Journal of Food Science and Technology 58 (11):4294–302. doi: 10.1007/s13197-020-04904-6.
  • Lian, R., J. Cao, X. Jiang, and A. V. Rogachev. 2021. Physicochemical, antibacterial properties and cytocompatibility of starch/chitosan films incorporated with zinc oxide nanoparticles. Materials Today Communications 27:102265. doi: 10.1016/j.mtcomm.2021.102265.
  • Liang, T., and L. Wang. 2018. Preparation and characterization of a novel edible film based on Artemisia sphaerocephala Krasch. Gum: Effects of type and concentration of plasticizers. Food Hydrocolloids. 77:502–8. doi: 10.1016/j.foodhyd.2017.10.028.
  • Li, L., H. Chen, M. Wang, X. Lv, Y. Zhao, and L. Xia. 2018. Development and characterization of irradiated-corn-starch films. Carbohydrate Polymers 194:395–400. doi: 10.1016/j.carbpol.2018.04.060.
  • Li, F., S. Mao, X. Zhou, S. Li, C. Lu, and T. Zhang. 2023. The Cyperus esculentus starch-based bioactive films: Characterisation, UV-shielding and antioxidant capacity. International Journal of Food Science & Technology 58 (8):4446–54. doi: 10.1111/ijfs.16558.
  • Lin, D., Y. Huang, Y. Liu, T. Luo, B. Xing, Y. Yang, Z. Yang, Z. Wu, H. Chen, Q. Zhang, et al. 2018. Physico-mechanical and structural characteristics of starch/polyvinyl alcohol/nano-titania photocatalytic antimicrobial composite films. LWT 96:704–12. doi: 10.1016/j.lwt.2018.06.001.
  • Lin, L., S. Peng, C. Shi, C. Li, Z. Hua, and H. Cui. 2022. Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules 212:155–64. doi: 10.1016/j.ijbiomac.2022.05.121.
  • Li, J., B. Zhu, H. Yu, M. Yuan, H. Chen, and Y. Qin. 2022. Application of pH-indicating film containing blue corn anthocyanins on corn starch/polyvinyl alcohol as substrate for preservation of tilapia. Journal of Food Measurement and Characterization 16 (6):4416–24. doi: 10.1007/s11694-022-01531-x.
  • Long, H., Y. Bi, L. Pu, W. Xu, H. Xue, G. Fu, and D. Prusky. 2022. Preparation of chitosan/fennel seed essential oil/starch sodium octenyl succinate composite films for apple fruit preservation. LWT 167:113826. doi: 10.1016/j.lwt.2022.113826.
  • Lopes, A. C., M. K. Barcia, T. B. Veiga, F. Yamashita, M. V. E. Grossmann, and J. B. Olivato. 2021. Eco-friendly materials produced by blown-film extrusion as potential active food packaging. Polymers for Advanced Technologies 32 (2):779–88. doi: 10.1002/pat.5130.
  • Lopes, J., I. Gonçalves, C. Nunes, B. Teixeira, R. Mendes, P. Ferreira, and M. A. Coimbra. 2021. Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life 28:100644. doi: 10.1016/j.fpsl.2021.100644.
  • Luchese, C. L., P. Benelli, J. C. Spada, and I. C. Tessaro. 2018. Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. Journal of Applied Polymer Science 135 (33):46564. doi: 10.1002/app.46564.
  • Luo, S., J. Chen, J. He, H. Li, Q. Jia, M. A. Hossen, J. Dai, W. Qin, and Y. Liu. 2022. Preparation of corn starch/rock bean protein edible film loaded with d-limonene particles and their application in glutinous rice cake preservation. International Journal of Biological Macromolecules 206:313–24. doi: 10.1016/j.ijbiomac.2022.02.139.
  • Luo, D., Q. Xie, S. Gu, and W. Xue. 2022. Potato starch films by incorporating tea polyphenol and MgO nanoparticles with enhanced physical, functional and preserved properties. International Journal of Biological Macromolecules 221:108–20. doi: 10.1016/j.ijbiomac.2022.09.010.
  • Luz, R. F., R. D. R. Ferreira, C. N. S. Silva, B. M. Miranda, R. H. Piccoli, M. S. Silva, L. C. Paula, M. I. G. Leles, K. F. Fernandes, M. V. Cruz, et al. 2023. Development of a halochromic, antimicrobial, and antioxidant starch-based film containing phenolic extract from jaboticaba peel. Foods (Basel, Switzerland) 12 (3):653. doi: 10.3390/foods12030653.
  • Macedo, J. V. C., M. M. Abe, P. B. Sanvezzo, R. Grillo, M. C. Branciforti, and M. Brienzo. 2023. Xylan-starch-based bioplastic formulation and xylan influence on the physicochemical and biodegradability properties. Polymer Bulletin 80 (7):8067–92. doi: 10.1007/s00289-022-04385-x.
  • Malafatti, J. O. D., M. Á. Domingues, M. R. Meirelles, L. G. S. Peres, J. D. Bresolin, and E. C. Paris. 2023. Antifungal and ultraviolet–visible barrier properties in starch films reinforced with CuO nanoparticles. Journal of Applied Polymer Science 140 (33):e54290. doi: 10.1002/app.54290.
  • Mangaraj, S., R. R. Thakur, and A. Yadav. 2022. Development and characterization of PLA and Cassava starch‐based novel biodegradable film used for food packaging application. Journal of Food Processing and Preservation 46 (9):e16314. doi: 10.1111/jfpp.16314.
  • Mao, S., F. Li, X. Zhou, C. Lu, and T. Zhang. 2023. Characterization and sustained release study of starch-based films loaded with carvacrol: A promising UV-shielding and bioactive nanocomposite film. LWT 180:114719. doi: 10.1016/j.lwt.2023.114719.
  • Marichelvam, M. K., Jawaid, M., and Asim, M. 2019. Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers 7(4), 32. doi: 10.3390/fib7040032.
  • Marinopoulou, A., M. Zoumaki, A. Goulas, S. Raphaelides, and V. Karageorgiou. 2022. Biodegradable films from spray dried starch inclusion complexes with bioactive compounds—The effect of glycerol and pH. Starch – Stärke 74 (9-10):2200133. doi: 10.1002/star.202200133.
  • Martins, P. C., J. M. Latorres, and V. G. Martins. 2022. Impact of starch nanocrystals on the physicochemical, thermal and structural characteristics of starch-based films. LWT 156:113041. doi: 10.1016/j.lwt.2021.113041.
  • Martins, C., F. Vilarinho, A. Sanches Silva, M. Andrade, A. V. Machado, M. C. Castilho, A. Sá, A. Cunha, M. F. Vaz, and F. Ramos. 2018. Active polylactic acid film incorporated with green tea extract: Development, characterization and effectiveness. Industrial Crops and Products 123:100–10. doi: 10.1016/j.indcrop.2018.06.056.
  • Matloob, A., H. Ayub, M. Mohsin, S. Ambreen, F. A. Khan, S. Oranab, M. A. Rahim, W. Khalid, G. A. Nayik, S. Ramniwas, et al. 2023. A Review on edible coatings and films: Advances, composition, production methods, and safety concerns. ACS Omega 8 (32):28932–44. doi: 10.1021/acsomega.3c03459.
  • Ma, X., and J. Yu. 2004. Formamide as the plasticizer for thermoplastic starch. Journal of Applied Polymer Science 93 (4):1769–73. doi: 10.1002/app.20628.
  • Ma, S., Y. Zheng, R. Zhou, and M. Ma. 2021. Characterization of chitosan films incorporated with different substances of konjac glucomannan, cassava starch, maltodextrin and gelatin, and application in Mongolian cheese packaging. Coatings 11 (1):84. doi: 10.3390/coatings11010084.
  • Mehboob, S., T. M. Ali, M. Sheikh, and A. Hasnain. 2020. Effects of cross linking and/or acetylation on sorghum starch and film characteristics. International Journal of Biological Macromolecules 155:786–94. doi: 10.1016/j.ijbiomac.2020.03.144.
  • Menzel, C., M. Andersson, R. Andersson, J. L. Vázquez-Gutiérrez, G. Daniel, M. Langton, M. Gällstedt, and K. Koch. 2015. Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes. Carbohydrate Polymers 130:388–97. doi: 10.1016/j.carbpol.2015.05.024.
  • Menzel, C., E. Olsson, T. S. Plivelic, R. Andersson, C. Johansson, R. Kuktaite, L. Järnström, and K. Koch. 2013. Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers 96 (1):270–6. doi: 10.1016/j.carbpol.2013.03.044.
  • Mohamed, S. A. A., M. El-Sakhawy, and M. A.-M. El-Sakhawy. 2020. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers 238:116178. doi: 10.1016/j.carbpol.2020.116178.
  • Mousavi, S. N., H. Daneshvar, M. S. Seyed Dorraji, Z. Ghasempour, V. Panahi-Azar, and A. Ehsani. 2021. Starch/alginate/Cu-g-C3N4 nanocomposite film for food packaging. Materials Chemistry and Physics 267:124583. doi: 10.1016/j.matchemphys.2021.124583.
  • Mukurumbira, A. R., J. J. Mellem, and E. O. Amonsou. 2017. Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydrate Polymers 165:142–8. doi: 10.1016/j.carbpol.2017.02.041.
  • Müller, L., G. Zanghelini, D. A. Laroque, J. B. Laurindo, G. A. Valencia, C. d Costa, and B. A. M. Carciofi. 2022. Cold atmospheric plasma for producing antibacterial bilayer films of LLDPE/cassava starch added with ZnO-nanoparticles. Food Packaging and Shelf Life 34:100988. doi: 10.1016/j.fpsl.2022.100988.
  • Nawab, A., F. Alam, A. Hadi, and Z. Lutfi. 2022. Development and characterization of edible film made from mango kernel starch. Journal of Packaging Technology and Research 6 (1):63–72. doi: 10.1007/s41783-022-00132-9.
  • Nguyen Vu, H. P., and N. Lumdubwong. 2016. Starch behaviors and mechanical properties of starch blend films with different plasticizers. Carbohydrate Polymers 154:112–20. doi: 10.1016/j.carbpol.2016.08.034.
  • Ni, S., H. Bian, Y. Zhang, Y. Fu, W. Liu, M. Qin, and H. Xiao. 2022. Starch-based composite films with enhanced hydrophobicity, thermal stability, and UV-shielding efficacy induced by lignin nanoparticles. Biomacromolecules 23 (3):829–38. doi: 10.1021/acs.biomac.1c01288.
  • Niu, X., Q. Ma, S. Li, W. Wang, Y. Ma, H. Zhao, J. Sun, J. Wang, and H. Hashemi Gahruie. 2021. Preparation and characterization of biodegradable composited films based on potato starch/glycerol/gelatin. Journal of Food Quality 2021:6633711.
  • Noè, C., C. Tonda-Turo, I. Carmagnola, M. Hakkarainen, and M. Sangermano. 2021. UV-cured biodegradable methacrylated starch-based coatings. Coatings 11 (2):127. doi: 10.3390/coatings11020127.
  • Nogueira, G. F., B. D. Leme, G. R. Santos, J. V. Silva, P. B. Nascimento, C. T. Soares, F. M. Fakhouri, and R. A. de Oliveira. 2021. Edible films and coatings formulated with arrowroot starch as a non-conventional starch source for plums packaging. Polysaccharides 2 (2):373–86. doi: 10.3390/polysaccharides2020024.
  • Nor Nadiha, M. Z., A. Fazilah, R. Bhat, and A. A. Karim. 2010. Comparative susceptibilities of sago, potato and corn starches to alkali treatment. Food Chemistry 121 (4):1053–9. doi: 10.1016/j.foodchem.2010.01.048.
  • Nordin, N., S. H. Othman, S. A. Rashid, and R. K. Basha. 2020. Effects of glycerol and thymol on physical, mechanical, and thermal properties of corn starch films. Food Hydrocolloids. 106:105884. doi: 10.1016/j.foodhyd.2020.105884.
  • Ochoa-Yepes, O., L. Di Giogio, S. Goyanes, A. Mauri, and L. Famá. 2019. Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate Polymers 208:221–31. doi: 10.1016/j.carbpol.2018.12.030.
  • Ojogbo, E., R. Blanchard, and T. Mekonnen. 2018. Hydrophobic and melt processable starch-laurate esters: synthesis, structure–property correlations. Journal of Polymer Science Part A: Polymer Chemistry 56 (23):2611–22. doi: 10.1002/pola.29237.
  • Oleyaei, S. A., H. Almasi, B. Ghanbarzadeh, and A. A. Moayedi. 2016. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties. Carbohydrate Polymers 152:253–62. doi: 10.1016/j.carbpol.2016.07.040.
  • Ollé Resa, C. P., R. J. Jagus, and L. N. Gerschenson. 2021. Do fillers improve the physicochemical properties of antimicrobial tapioca starch edible films? Journal of Food Safety 41 (2):e12880. doi: 10.1111/jfs.12880.
  • Oluba, O. M., C. F. Obi, O. B. Akpor, S. I. Ojeaburu, F. D. Ogunrotimi, A. A. Adediran, and M. Oki. 2021. Fabrication and characterization of keratin starch biocomposite film from chicken feather waste and ginger starch. Scientific Reports 11 (1):8768. doi: 10.1038/s41598-021-88002-3.
  • Ortega, F., L. Giannuzzi, V. B. Arce, and M. A. García. 2017. Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocolloids. 70:152–62. doi: 10.1016/j.foodhyd.2017.03.036.
  • Ortega, F., J. Minnaard, V. B. Arce, and M. A. García. 2023. Nanocomposite starch films: Cytotoxicity studies and their application as cheese packaging. Food Bioscience 53:102562. doi: 10.1016/j.fbio.2023.102562.
  • Othman, S. H., N. F. L. Othman, R. A. Shapi’i, S. H. Ariffin, and K. F. M. Yunos. 2021. Corn starch/chitosan nanoparticles/thymol bio-nanocomposite films for potential food packaging applications. Polymers 13 (3):390. doi: 10.3390/polym13030390.
  • Otoni, C. G., R. J. Avena-Bustillos, H. M. C. Azeredo, M. V. Lorevice, M. R. Moura, L. H. C. Mattoso, and T. H. McHugh. 2017. Recent advances on edible films based on fruits and vegetables—A review. Comprehensive Reviews in Food Science and Food Safety 16 (5):1151–69. doi: 10.1111/1541-4337.12281.
  • Ounkaew, A., N. Janaum, P. Kasemsiri, M. Okhawilai, S. Hiziroglu, and P. Chindaprasirt. 2021. Synergistic effect of starch/polyvinyl alcohol/citric acid films decorated with in-situ green-synthesized nano silver on bioactive packaging films. Journal of Environmental Chemical Engineering 9 (6):106793. doi: 10.1016/j.jece.2021.106793.
  • Puelles-Román, J., N. G. Barroso, J. P. Cruz-Tirado, D. R. Tapia-Blácido, L. Angelats-Silva, G. Barraza-Jáuregui, and R. Siche. 2021. Annealing process improves the physical, functional, thermal, and rheological properties of Andean oca (Oxalis tuberosa) starch. Journal of Food Process Engineering 44 (6):e13702. doi: 10.1111/jfpe.13702.
  • Punia, S. 2020. Barley starch modifications: Physical, chemical and enzymatic – A review. International Journal of Biological Macromolecules 144:578–85. doi: 10.1016/j.ijbiomac.2019.12.088.
  • Qi, Z., P. Xie, C. Yang, X. Xue, H. Chen, H. Zhou, H. Yuan, G. Yang, and C. Wang. 2023. Developing fisetin-AgNPs incorporated in reinforced chitosan/pullulan composite-film and its application of postharvest storage in litchi fruit. Food Chemistry 407:135122. doi: 10.1016/j.foodchem.2022.135122.
  • Qin, Y., D. Yun, F. Xu, D. Chen, J. Kan, and J. Liu. 2021. Smart packaging films based on starch/polyvinyl alcohol and Lycium ruthenicum anthocyanins-loaded nano-complexes: Functionality, stability and application. Food Hydrocolloids. 119:106850. doi: 10.1016/j.foodhyd.2021.106850.
  • Qin, Y., D. Yun, F. Xu, C. Li, D. Chen, and J. Liu. 2021. Impact of storage conditions on the structure and functionality of starch/polyvinyl alcohol films containing Lycium ruthenicum anthocyanins. Food Packaging and Shelf Life 29:100693. doi: 10.1016/j.fpsl.2021.100693.
  • Quequezana, M., E. Medrano de Jara, H. Palza Cordero, and L. Miranda Zanardi. 2023. Development and characterization of novel packaging films from composite mixtures of rice-starch, tara gum and pectin. Journal of Food Science and Technology 60 (3):1153–62. doi: 10.1007/s13197-023-05669-4.
  • Rai, P., S. Mehrotra, S. Priya, E. Gnansounou, and S. K. Sharma. 2021. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology 325:124739. doi: 10.1016/j.biortech.2021.124739.
  • Rajapaksha, S. W., and N. Shimizu. 2021. Development and characterization of functional starch-based films incorporating free or microencapsulated spent black tea extract. Molecules (Basel, Switzerland) 26 (13):3898. doi: 10.3390/molecules26133898.
  • Ribeiro-Santos, R., M. Andrade, N. R. d Melo, and A. Sanches-Silva. 2017. Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology 61:132–40. doi: 10.1016/j.tifs.2016.11.021.
  • Rodrigues, R., S. Patil, J. Dhakane-Lad, V. Nadanathangam, and A. Mahapatra. 2022. Effect of green tea extract, ginger essential oil and nanofibrillated cellulose reinforcements in starch films on the keeping quality of strawberries. Journal of Food Processing and Preservation 46 (1):e16109. doi: 10.1111/jfpp.16109.
  • Romanazzi, G., E. Feliziani, S. B. Baños, and D. Sivakumar. 2017. Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition 57 (3):579–601. doi: 10.1080/10408398.2014.900474.
  • Rompothi, O., P. Pradipasena, K. Tananuwong, A. Somwangthanaroj, and T. Janjarasskul. 2017. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability. Carbohydrate Polymers 157:748–56. doi: 10.1016/j.carbpol.2016.09.007.
  • Rong, L., X. Ji, M. Shen, X. Chen, X. Qi, Y. Li, and J. Xie. 2023. Characterization of gallic acid-Chinese yam starch biodegradable film incorporated with chitosan for potential use in pork preservation. Food Research International (Ottawa, Ont.) 164:112331. doi: 10.1016/j.foodres.2022.112331.
  • Rosenboom, J.-G., R. Langer, and G. Traverso. 2022. Bioplastics for a circular economy. Nature Reviews. Materials 7 (2):117–37. doi: 10.1038/s41578-021-00407-8.
  • Roy, S., and J.-W. Rhim. 2022. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. Food Bioscience 49:101867. doi: 10.1016/j.fbio.2022.101867.
  • Sahari, J., S. M. Sapuan, E. S. Zainudin, and M. A. Maleque. 2013. Thermo-mechanical behaviors of thermoplastic starch derived from sugar palm tree (Arenga pinnata). Carbohydrate Polymers 92 (2):1711–6. doi: 10.1016/j.carbpol.2012.11.031.
  • Sakkara, S., D. Nataraj, K. Venkatesh, Y. Xu, J. H. Patil, and N. Reddy. 2020. Effect of pH on the physicochemical properties of starch films. Journal of Applied Polymer Science 137 (15):48563. doi: 10.1002/app.48563.
  • Saliu, O. D., G. A. Olatunji, A. I. Olosho, A. G. Adeniyi, Y. Azeh, F. T. Samo, D. O. Adebayo, and O. O. Ajetomobi. 2019. Barrier property enhancement of starch citrate bioplastic film by an ammonium-thiourea complex modification. Journal of Saudi Chemical Society 23 (2):141–9. doi: 10.1016/j.jscs.2018.06.004.
  • Sanchez, L. T., M. I. Pinzon, and C. C. Villa. 2022. Development of active edible films made from banana starch and curcumin-loaded nanoemulsions. Food Chemistry 371:131121. doi: 10.1016/j.foodchem.2021.131121.
  • Santhosh, R., and P. Sarkar. 2022. Jackfruit seed starch/tamarind kernel xyloglucan/zinc oxide nanoparticles-based composite films: Preparation, characterization, and application on tomato (Solanum lycopersicum) fruits. Food Hydrocolloids. 133:107917. doi: 10.1016/j.foodhyd.2022.107917.
  • Schafranski, K., V. C. Ito, and L. G. Lacerda. 2021. Impacts and potential applications: A review of the modification of starches by heat-moisture treatment (HMT). Food Hydrocolloids. 117:106690. doi: 10.1016/j.foodhyd.2021.106690.
  • Serrano, C., R. Santos, C. Viegas, M. M. Sapata, R. Galhano dos Santos, J. A. D. Condeço, A. C. Marques, and J. C. Bordado. 2022. Edible films to improve quality and shelf life of fresh tortillas. International Journal of Gastronomy and Food Science 27:100480. doi: 10.1016/j.ijgfs.2022.100480.
  • Sharma, M. K., S. Bhuvaneswari, H. K. Lautre, V. P. Sundramurthy, S. Mohanasundaram, J. M. Khaled, and M. Thiruvengadam. 2023. Cellulose fortified bio-composite film preparation using starch isolated from waste avocado seed: Starch properties and film performance. Biomass Conversion and Biorefinery 66:1–18. doi: 10.1007/s13399-023-05058-z.
  • Sharma, I., A. Sinhmar, R. Thory, K. S. Sandhu, M. Kaur, V. Nain, A. K. Pathera, and P. Chavan. 2021. Synthesis and characterization of nano starch-based composite films from kidney bean (Phaseolus vulgaris). Journal of Food Science and Technology 58 (6):2178–85. doi: 10.1007/s13197-020-04728-4.
  • Shen, Y., J. Zhou, C. Yang, Y. Chen, Y. Yang, C. Zhou, L. Wang, G. Xia, X. Yu, and H. Yang. 2022. Preparation and characterization of oregano essential oil-loaded Dioscorea zingiberensis starch film with antioxidant and antibacterial activity and its application in chicken preservation. International Journal of Biological Macromolecules 212:20–30. doi: 10.1016/j.ijbiomac.2022.05.114.
  • Siddiqui, N., M. Shaikh, N. A. Butt, S. Haider, Z. Parveen, D-e-s Sattar, T. M. Ali, and T. Abbas. 2023. Preparation and characterization of rice starch nanocomposite films reinforced with silver nanoparticles synthesized from onion peel extract. Starch – Stärke 75 (11–12):2300087. doi: 10.1002/star.202300087.
  • Sifuentes-Nieves, I., P. C. Flores-Silva, C. Gallardo-Vega, E. Hernández-Hernández, G. Neira-Velázquez, G. Mendez-Montealvo, and G. Velazquez. 2020. Films made from plasma-modified corn starch: Chemical, mechanical and barrier properties. Carbohydrate Polymers 237:116103. doi: 10.1016/j.carbpol.2020.116103.
  • Singha, P., R. Rani, and L. S. Badwaik. 2023. Sweet lime peel-, polyvinyl alcohol- and starch-based biodegradable film: Preparation and characterization. Polymer Bulletin 80 (1):589–605. doi: 10.1007/s00289-021-04040-x.
  • Socaciu, M.-I., V. Câmpian, D.-C. Dabija, M. Fogarasi, C. A. Semeniuc, A. S. Podar, and D. C. Vodnar. 2022. Assessing consumers’ preference and loyalty towards biopolymer films for food active packaging. Coatings 12 (11):1770. doi: 10.3390/coatings12111770.
  • Sohany, M., I. S. Tawakkal, S. H. Ariffin, N. N. Shah, and Y. A. Yusof. 2021. Characterization of anthocyanin associated purple sweet potato starch and peel-based pH indicator films. Foods (Basel, Switzerland) 10 (9):2005. doi: 10.3390/foods10092005.
  • Soison, B., K. Jangchud, A. Jangchud, T. Harnsilawat, and K. Piyachomkwan. 2015. Characterization of starch in relation to flesh colors of sweet potato varieties. International Food Research Journal 22:2302–8.
  • Song, X. 2022. Effect of storage conditions on the physicochemical characteristics of bilayer edible films based on iron Yam–Pea starch blend and corn zein. Coatings 12 (10):1524. doi: 10.3390/coatings12101524.
  • Sornsumdaeng, K., P. Seeharaj, and J. Prachayawarakorn. 2021. Property improvement of biodegradable citric acid-crosslinked rice starch films by calcium oxide. International Journal of Biological Macromolecules 193 (Pt A):748–57. doi: 10.1016/j.ijbiomac.2021.10.157.
  • Suderman, N., M. I. N. Isa, and N. M. Sarbon. 2018. The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Bioscience 24:111–9. doi: 10.1016/j.fbio.2018.06.006.
  • Tagliapietra, B. L., M. H. F. Felisberto, E. A. Sanches, P. H. Campelo, and M. T. P. S. Clerici. 2021. Non-conventional starch sources. Current Opinion in Food Science 39:93–102. doi: 10.1016/j.cofs.2020.11.011.
  • Tai, N. L., R. Adhikari, R. Shanks, and B. Adhikari. 2017. Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity. Carbohydrate Polymers 163:236–46. doi: 10.1016/j.carbpol.2017.01.082.
  • Talón, E., M. Vargas, A. Chiralt, and C. González-Martínez. 2019. Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT 113:108290. doi: 10.1016/j.lwt.2019.108290.
  • Tamimi, N., A. Mohammadi Nafchi, H. Hashemi-Moghaddam, and H. Baghaie. 2021. The effects of nano-zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite. Food Science & Nutrition 9 (8):4497–508. doi: 10.1002/fsn3.2426.
  • Tavares, K. M., A. d Campos, B. R. Luchesi, A. A. Resende, J. E. d Oliveira, and J. M. Marconcini. 2020. Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Carbohydrate Polymers 246:116521. doi: 10.1016/j.carbpol.2020.116521.
  • Thirumdas, R., D. Kadam, and U. S. Annapure. 2017. Cold plasma: An alternative technology for the starch modification. Food Biophysics 12 (1):129–39. doi: 10.1007/s11483-017-9468-5.
  • Tian, Z., X. Shi, Y. Zhang, and R. Li. 2021. An active packaging film based on esterified starch with Tartary buckwheat bran extract and chitosan and its application for mutton preservation. Journal of Food Processing and Preservation 45 (12):e16000. doi: 10.1111/jfpp.16000.
  • Tien, N. N. T., H. T. Nguyen, N. L. Le, T. T. Khoi, and A. Richel. 2023. Biodegradable films from dragon fruit (Hylocereus polyrhizus) peel pectin and potato starches crosslinked with glutaraldehyde. Food Packaging and Shelf Life 37:101084. doi: 10.1016/j.fpsl.2023.101084.
  • Tiozon, R. J N., A. P. Bonto, and N. Sreenivasulu. 2021. Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review. International Journal of Biological Macromolecules 192:100–17. doi: 10.1016/j.ijbiomac.2021.09.194.
  • Tirado-Gallegos, J. M., P. B. Zamudio-Flores, J. D. Ornelas-Paz, C. Rios-Velasco, G. I. Olivas Orozco, M. Espino-Díaz, R. Baeza-Jiménez, J. J. Buenrostro-Figueroa, M. A. Aguilar-González, D. Lardizábal-Gutiérrez, et al. 2018. Elaboration and characterization of active apple starch films incorporated with ellagic acid. Coatings 8 (11):384. doi: 10.3390/coatings8110384.
  • Toro-Márquez, L. A., D. Merino, and T. J. Gutiérrez. 2018. Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology 11 (11):1955–73. doi: 10.1007/s11947-018-2160-z.
  • Tosif, M. M., A. Bains, P. K. Sadh, P. K. Sarangi, R. Kaushik, S. V. S. Burla, P. Chawla, and K. Sridhar. 2023. Loquat seed starch-Emerging source of non-conventional starch: Structure, properties, and novel applications. International Journal of Biological Macromolecules 244:125230. doi: 10.1016/j.ijbiomac.2023.125230.
  • Velásquez-Castillo, L. E., M. A. Leite, V. J. Tisnado, C. Ditchfield, P. J. Sobral, and I. C. Moraes. 2023. Cassava starch films containing quinoa starch nanocrystals: Physical and surface properties. Foods (Basel, Switzerland) 12 (3):576. doi: 10.3390/foods12030576.
  • Wahidin, M., A. Srimarlita, I. Sulaiman, and E. Indarti. 2021. Transparency and thickness of jackfruit and durian seed starch edible film. IOP Conference Series: Earth and Environmental Science 667 (1):012030. doi: 10.1088/1755-1315/667/1/012030.
  • Wan, S., Q. Liu, D. Yang, P. Guo, Y. Gao, R. Mo, and Y. Zhang. 2023. Characterization of high amylose corn starch-cinnamaldehyde inclusion films for food packaging. Food Chemistry 403:134219. doi: 10.1016/j.foodchem.2022.134219.
  • Wang, J., Q. Gao, F. Zhao, and J. Ju. 2023. Repair mechanism and application of self-healing materials for food preservation. Critical Reviews in Food Science and Nutrition 156:1–11. doi: 10.1080/10408398.2023.2232877.
  • Wang, Y., R. Li, R. Lu, J. Xu, K. Hu, and Y. Liu. 2019. Preparation of chitosan/corn starch/cinnamaldehyde films for strawberry preservation. Foods (Basel, Switzerland) 8 (9):423. doi: 10.3390/foods8090423.
  • Wang, R., P. Liu, B. Cui, X. Kang, and B. Yu. 2019. Effects of different treatment methods on properties of potato starch-lauric acid complex and potato starch-based films. International Journal of Biological Macromolecules 124:34–40. doi: 10.1016/j.ijbiomac.2018.11.207.
  • Wang, Z., P. Mhaske, A. Farahnaky, S. Kasapis, and M. Majzoobi. 2022. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids 129:107542. doi: 10.1016/j.foodhyd.2022.107542.
  • Wang, W., K. Wang, J. Xiao, Y. Liu, Y. Zhao, and A. Liu. 2017. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. International Journal of Biological Macromolecules 94 (Pt A):258–65. doi: 10.1016/j.ijbiomac.2016.10.014.
  • Wang, Y. H., Q. Y. Yang, F. Y. Zhao, M. Li, and J. Ju. 2024. Synergistic antifungal mechanism of eugenol and citral against Aspergillus niger: Molecular level. Industrial Crops and Products 213:118435. doi: 10.1016/j.indcrop.2024.118435.
  • Wang, Y., H. Zhang, Y. Zeng, M. A. Hossen, J. Dai, S. Li, Y. Liu, and W. Qin. 2022. Development and characterization of potato starch/lactucin/nano-TiO2 food packaging for sustained prevention of mealworms. Food Packaging and Shelf Life 33:100837. doi: 10.1016/j.fpsl.2022.100837.
  • Wu, H., J. Wang, T. Li, Y. Lei, L. Peng, J. Chang, S. Li, X. Yuan, M. Zhou, and Z. Zhang. 2023. Effects of cinnamon essential oil-loaded Pickering emulsion on the structure, properties and application of chayote tuber starch-based composite films. International Journal of Biological Macromolecules 240:124444. doi: 10.1016/j.ijbiomac.2023.124444.
  • Xie, Q., X. Liu, Y. Zhang, and G. Liu. 2023. Development and characterization of a new potato starch/watermelon peel pectin composite film loaded with TiO2 nanoparticles and microencapsulated Lycium barbarum leaf flavonoids and its use in the Tan mutton packaging. International Journal of Biological Macromolecules 252:126532. doi: 10.1016/j.ijbiomac.2023.126532.
  • Xing, J-j., D. Li, L-j Wang, and B. Adhikari. 2018. Temperature thresholds and time-temperature dependence of gelatinization for heat-moisture treated corn starch. Journal of Food Engineering 217:43–9. doi: 10.1016/j.jfoodeng.2017.08.019.
  • Yang, H., M. Tang, W. Wu, W. Ding, B. Ding, and X. Wang. 2021. Study on inhibition effects and mechanism of wheat starch retrogradation by polyols. Food Hydrocolloids 121:106996. doi: 10.1016/j.foodhyd.2021.106996.
  • Yıldırım-Yalçın, M., H. Sadıkoğlu, and M. Şeker. 2021. Characterization of edible film based on grape juice and cross-linked maize starch and its effects on the storage quality of chicken breast fillets. LWT 142:111012. doi: 10.1016/j.lwt.2021.111012.
  • Yıldırım-Yalçın, M., H. Sadıkoğlu, and M. Şeker. 2021. Optimization of mechanical and antioxidant properties of edible film based on grape juice and cross-linked maize starch and evaluation of its effects on the storage quality of fresh-cut pineapple. Journal of Food Measurement and Characterization 15 (5):4669–78. doi: 10.1007/s11694-021-01038-x.
  • Yuan, L., W. Feng, Z. Zhang, Y. Peng, Y. Xiao, and J. Chen. 2021. Effect of potato starch-based antibacterial composite films with thyme oil microemulsion or microcapsule on shelf life of chilled meat. Lwt 139:110462. doi: 10.1016/j.lwt.2020.110462.
  • Zakaria, N. H., N. Muhammad, A. V. Sandu, and M. M. A. B. Abdullah. 2018. Effect of mixing temperature on characteristics of thermoplastic potato starch film. IOP Conference Series: Materials Science and Engineering 374 (1):012083. doi: 10.1088/1757-899X/374/1/012083.
  • Zavareze, E. d R., V. Z. Pinto, B. Klein, S. L. M. El Halal, M. C. Elias, C. Prentice-Hernández, and A. R. G. Dias. 2012. Development of oxidised and heat–moisture treated potato starch film. Food Chemistry 132 (1):344–50. doi: 10.1016/j.foodchem.2011.10.090.
  • Zeng, Y.-F., Y.-Y. Chen, Y.-Y. Deng, C. Zheng, C.-Z. Hong, Q.-M. Li, X.-F. Yang, L.-H. Pan, J.-P. Luo, X.-Y. Li, et al. 2024. Preparation and characterization of lotus root starch based bioactive edible film containing quercetin-encapsulated nanoparticle and its effect on grape preservation. Carbohydrate Polymers 323:121389. doi: 10.1016/j.carbpol.2023.121389.
  • Zeng, S., S. Wang, M. Xiao, D. Han, and Y. Meng. 2011. Preparation and properties of biodegradable blend containing poly (propylene carbonate) and starch acetate with different degrees of substitution. Carbohydrate Polymers 86 (3):1260–5. doi: 10.1016/j.carbpol.2011.06.023.
  • Zhai, X., M. Li, R. Zhang, W. Wang, and H. Hou. 2023. Extrusion-blown starch/PBAT biodegradable active films incorporated with high retentions of tea polyphenols and the release kinetics into food simulants. International Journal of Biological Macromolecules 227:851–62. doi: 10.1016/j.ijbiomac.2022.12.194.
  • Zhang, K., T. Su, F. Cheng, Y. Lin, M. Zhou, P. Zhu, R. Li, and D. Wu. 2020. Effect of sodium citrate/polyethylene glycol on plasticization and retrogradation of maize starch. International Journal of Biological Macromolecules 154:1471–7. doi: 10.1016/j.ijbiomac.2019.11.028.
  • Zhao, S., R. Jia, J. Yang, L. Dai, N. Ji, L. Xiong, and Q. Sun. 2022. Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. International Journal of Biological Macromolecules 205:419–29. doi: 10.1016/j.ijbiomac.2022.02.101.
  • Zhao, P., X. Yan, M. Cheng, Y. Wang, Y. Wang, K. Wang, X. Wang, and J. Wang. 2023. Effect of Pickering emulsion on the physical properties, microstructure and bioactivity of corn starch/cassia gum composite films. Food Hydrocolloids. 141:108713. doi: 10.1016/j.foodhyd.2023.108713.
  • Zhao, T., H. Zhang, F. Chen, P. Tong, W. Cao, and Y. Jiang. 2022. Study on structural changes of starches with different amylose content during gelatinization process. Starch – Stärke 74 (7–8):2100269. doi: 10.1002/star.202100269.
  • Zheng, K., J. Zhang, F. Yang, W. Wang, W. Li, and C. Qin. 2022. Properties and biological activity of chitosan-coix seed starch films incorporated with nano zinc oxide and Artemisia annua essential oil for pork preservation. LWT 164:113665. doi: 10.1016/j.lwt.2022.113665.
  • Zhong, Y., S. Liu, C. Huang, X. Li, L. Chen, L. Li, and J. Zhu. 2017. Effect of amylose/amylopectin ratio of esterified starch-based films on inhibition of plasticizer migration during microwave heating. Food Control 82:283–90. doi: 10.1016/j.foodcont.2017.06.038.
  • Zhou, X., R. Cheng, B. Wang, J. Zeng, J. Xu, J. Li, L. Kang, Z. Cheng, W. Gao, and K. Chen. 2021. Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydrate Polymers 251:117117. doi: 10.1016/j.carbpol.2020.117117.
  • Zhu, F., and P. Liu. 2020. Starch gelatinization, retrogradation, and enzyme susceptibility of retrograded starch: Effect of amylopectin internal molecular structure. Food Chemistry 316:126036. doi: 10.1016/j.foodchem.2019.126036.
  • Zhu, L., H. Luo, Z.-W. Shi, C-q Lin, and J. Chen. 2023a. Preparation, characterization, and antibacterial effect of bio-based modified starch films. Food Chemistry: X 17:100602. doi: 10.1016/j.fochx.2023.100602.
  • Zhu, S., R. H. Ukwatta, X. Cai, Y. Zheng, F. Xue, C. Li, and L. Wang. 2023b. The physiochemical and photodynamic inactivation properties of corn starch/erythrosine B composite film and its application on pork preservation. International Journal of Biological Macromolecules 225:112–22. doi: 10.1016/j.ijbiomac.2022.12.080.
  • Zhu, F., and S. Wang. 2014. Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends in Food Science & Technology 36 (2):68–78. doi: 10.1016/j.tifs.2014.01.008.
  • Zia, F., K. M. Zia, M. Zuber, S. Kamal, and N. Aslam. 2015. Starch based polyurethanes: A critical review updating recent literature. Carbohydrate Polymers 134:784–98. doi: 10.1016/j.carbpol.2015.08.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.