1,089
Views
97
CrossRef citations to date
0
Altmetric
Research Article

Botulism Diagnostics: From Clinical Symptoms to in vitro Assays

, &
Pages 109-125 | Received 02 Jan 2007, Accepted 14 Mar 2007, Published online: 11 Oct 2008

REFERENCES

  • Adams A., Thompson K.D. Biotechnology offers revolution to fish health management. Trends Biotechnol. 2006; 24: 201–205
  • Ahn-Yoon S., DeCory T.R., Durst R.A. Ganglioside-liposome immunoassay for the detection of botulinum toxin. Anal. Bio. 2004; 378: 68–75
  • AOAC International. AOAC official method 977.26 (Sec. 17.7.01) Clostridium botulinum and its toxins in foods. Official Methods of Analysis17th Ed. AOAC International, Gaithersburg, MD 2001
  • Arnon S.S., Schechter R., Inglesby T.V., Henderson D.A., Bartlett J.G., Ascher M.S., Eitzen E., Fine A.D., Hauer J., Layton M., Lillibridge S., Osterholm M.T., O’Toole T., Parker G., Perl T.M., Russell P.K., Swerdlow D.L., Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001; 285: 1059–1070
  • Arnon S.S., Schechter R., Maslanka S.E., Jewell N.P., Hatheway C.L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med. 2006; 354: 462–471
  • Barr J.R., Moura H., Boyer A.E., Woolfitt A.R., Kalb S.R., Pavlopoulos A., McWilliams L.G., Schmidt J.G., Martinez R.A., Ashley D.L. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg. Infect. Dis. 2005; 11: 1578–1583
  • Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Sudhof T.C., Jahn R., Niemann H. Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 1994; 269: 1617–1620
  • Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., Camilli P., Sudhof T.C., Niemann H., Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP–25. Nature 1993; 365: 160–163
  • Blasi J., Chapman E.R., Link E., Binz T., Yamasaki S., De Camilli P., Sudhof T.C., Niemann H., Jahn R. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 1993; 12: 4821–4828
  • Boldt G.E., Eubanks L.M., Janda K.D. Identification of a botulinum neurotoxin A protease inhibitor displaying efficacy in a cellular model. Chem Commun (Camb) 2006; 29: 3063–3065
  • Boroff D., Fleck U. Statistical analysis of a rapid in vivo method for the titration of the toxin of Clostridium botulinum. J Bacteriol 1966; 92: 1580–1581
  • Boyer A.E., Moura H., Woolfitt A.R., Kalb S.R., McWilliams L.G., Pavlopoulos A., Schmidt J.G., Ashley D.L., Barr J.R. From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal Chem 2005; 77: 3916–3924
  • Cai S, Kukreja R., Shoesmith S., Chang T.W., Singh B.R. Botulinum Neurotoxin Light Chain Refolds at Endosomal pH for its Translocation. Protein J 2006; 25: 455–462
  • Cai S., Singh B.R. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreito. Biochemistry 1999; 38: 6903–6910
  • Centers for Disease Control and Prevention. Botulism in the United States. 1998; 1899–1996
  • Chia J.K., Clark J.B., Ryan C.A., Pollack M. Botulism in an adult associated with food-borne intestinal infection with Clostridium botulinum. N. Engl. J. Med 1986; 315: 239–240
  • Clapp A.R., Medintz I.L., Uyeda H.T., Fisher B.R., Goldman E.R., Bawendi M.G., Mattoussi H. Quantum dot–based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 2005; 127: 18212–18221
  • Cooper J.G., Spilke C.E., Denton M., Jamieson S. Clostridium botulinum: an increasing complication of heroin misuse. Eur J Emerg Med 2005; 12: 251–252
  • Deregt D., Gilbert S.A., Dudas S., Pasick J., Baxi S., Burton K.M., Baxi M.K. A multiplex DNA suspension microarray for simultaneous detection and differentiation of classical swine fever virus and other pestiviruses. J Virol Methods 2006; 136: 17–23
  • Dezfulian M., Bartlett J.G. Detection of Clostridium botulinum type A toxin by enzyme-linked immunosorbent assay with antibodies produced in immunologically tolerant animals. J Clin Microbiol 1984; 19: 645–648
  • Dezfulian M., Hatheway C.L., Yolken R.H., Bartlett J.G. Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and type B toxins in stool samples of infants with botulism. J Clin Microbiol 1984; 20: 379–383
  • Doellgast G.J., Triscott M.X., Beard G.A., Bottoms J.D., Cheng T., Roh B.H., Roman M.G., Hall P.A., Brown J.E. Sensitive enzyme-linked immunosorbent assay for the detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coadulation assay. J. Clin. Microbiol. 1993; 31: 2402–2409
  • Dong M., Richards D.A., Goodnough M.C., Tepp W.H., Johnson E.A., Chapman E.R. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell Biol. 2003; 162: 1293–1303
  • Dong M., Tepp W.H., Johnson E.A., Chapman E.R. Using fluorescent sensors to detect botulinum neurotoxin activity in vitro and in living cells. Proc Natl Acad Sci USA 2004; 101: 14701–14706
  • Dong M., Yeh F., Tepp W.H., Dean C., Johnson E.A., Janz R., Chapman E.R. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006; 312: 592–596
  • Dunbar S.A. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 2006; 363: 71–82
  • Fenicia L., Franciosa G., Pourshaban M., Aureli P. Intestinal toxemia botulism in two young people, caused by Clostridium butyricum type E. Clin. Infect. Dis. 1999; 29: 1381–1387
  • Ferreira J.L. Comparison of amplified ELISA and mouse bioassay procedures for detection of botulinal toxins A, B, E, and F. J. AOAC Int 2001; 84: 85–88
  • Ferreira J.L., Eliasberg S.J. Detection of preformed type A botulinal toxin in harsh brown potatoes by using the mouse bioassay and a modified ELISA test. J. AOAC Int. 2001; 84: 1460–1464
  • Ferreira J.L., Maslanka S., Johnson E., Goodnough M. Detection of botulinal toxins A, B, E, and F by amplified enzyme-linked immunosorbent assay: collaborative study. J. AOAC Int. 2003; 86: 314–331
  • Foran P., Lawrence G.W., Shone C.C., Foster K.A., Dolly J.O. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry 1996; 35: 2630–2636
  • Freedman M., Armstrong R. M., Killian J. M., Bolland D. Botulism in a patient with jejunoileal bypass. Ann. Neurol. 1986; 20: 641–643
  • Fu F.N., Lomneth R.B., Cai S., Singh B.R. Role of zinc in the structure and toxic activity of botulinum neurotoxin. Biochemistry 1998; 37: 5267–5278
  • Fujinaga Y., Takeshi K., Inoue K., Fujita R., Ohyama T., Moriishi K., Oguma K. Type A and B neurotoxin genes in a Clostridium botulinum type AB strain. Biochem. and Biophys. Res. Commun. 1995; 213: 737–745
  • Gatto-Menking D.L., Yu H., Bruno J.G., Goode M.T., Miller M., Zulich A.W. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosens. Bioelectron. 1995; 10: 501–507
  • Georganopoulou D.G., Chang L., Nam J.M., Thaxton C.S., Mufson E.J., Klein W.L., Mirkin C.A. Nanoparticle–based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc Natl Acad Sci USA 2005; 102: 2273–2276
  • Goldman E.R., Clapp A.R., Anderson G.P., Uyeda H.T., Mauro J.M., Medintz I.L., Mattoussi H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 2004; 76: 684–688
  • Goldman E.R., Mattoussi H., Anderson G.P., Medintz I.L, Mauro J.M. Fluoroimmunoassays using antibody-conjugated quantum dots. Methods Mol Biol 2005; 303: 19–34
  • Goluch E.D., Nam J.M., Georganopoulou D.G., Chiesl T.N., Shaikh K.A., Ryu K.S., Barron A.E., Mirkin C.A., Liu C. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 2006; 6: 1293–1299
  • Greenfield R.A., Brown B.R., Hutchins J.B., Iandolo J.J., Jackson R., Slater L.N., Bronze M.S. Microbiological, biological, and chemical weapons of warfare and terrorism. Am. J. Med. Sci. 2002; 323: 326–340
  • Grumelli C., Verderio C., Pozzi D., Rossetto O., Montecucco C., Matteoli M. Internalization and mechanism of action of clostridial toxins in neurons. Neurotoxicology 2005; 26: 761–767
  • Guglielmo-Viret V., Attree O., Blanco-Gros V., Thullier P. Comparison of electrochemiluminescence assay and ELISA for the detection of Clostridium botulinum type B neurotoxin. J. Immunol. Methods. 2005; 301: 164–172
  • Gupta A., Sumner C.J., Castor M., Maslanka S., Sobel J. Adult botulism type F in the United States, 1981–2002. Neurology 2005; 65: 1694–1700
  • Haab B. B. Methods and applications of antibody microarrays in cancer research. Proteomics 2003; 3: 2116–2122
  • Hall J.D., McCroskey L.M., Pincomb B.J., Hatheway C.L. Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism. J. Clin. Microbiol. 1985; 21: 654–655
  • Harwanegg C, Hiller R. Protein microarrays in diagnosing IgE-mediated diseases: spotting allergy at the molecular level. Expert. Rev. Mol. Diagn. 2004; 4: 539–548
  • Inoue K., Fujinaga Y., Watanabe T., Ohyama T., Takeshi K., Moriishi K., Nakajima H., Inoue K., Oguma K. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect. Immun. 1996; 64: 1589–1594
  • Isacsohn M., Cohen A., Steiner P., Rosenberg P., Rudensky B. Botulism intoxication after surgery in the gut. Israel J. Med. Sci. 1985; 21: 150–153
  • Jayasena S.D. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clinical Chem 1999; 45: 1628–1650
  • Jenison R.D., Gill S.C., Pardi A., Polisky B. High-Resolution molecular discrimination by RNA. Science 1994; 263: 1425–1429
  • Johnson E.A., Bradshaw M. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 2001; 39: 1703–1722
  • Jung R., Soondrum K., Neumaier M. Quantitative PCR. Clin. Chem. Lab Med. 2000; 38: 833–836
  • Kalb S.R., Goodnough M.C., Malizio C.J., Pirkle J.L., Barr J.R. Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal. Chem. 2005; 77: 6140–6146
  • Kalb S.R., Moura H., Boyer A.E., McWilliams L.G., Pirkle J.L., Barr J.R. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal. Biochem. 2006; 351: 84–92
  • Keller J.E., Cai F., Neale E.A. Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 2004; 43: 526–532
  • Koriazova L.K., Montal M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol. 2003; 10: 13–18
  • Kozaki S., Kamata Y., Takahashi M., Shimizu T., Sakaguchi G. Antibodies against botulinum neurotoxin. Botulinum Neurotoxin and Tetanus Toxin, L.L. Simpson. Academic Press, San Diego 1989; 301–318
  • Lebeda F.J., Singh B.R. Membrane channel activity and translocation of tetanus and botulinum neurotoxins. J. Toxicol.–Toxin Reviews. 1999; 18: 45–76
  • Lee S.-W., Sullenger B.A. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nat. Biotech. 1997; 15: 41–45
  • Li L., Singh B.R. Structure-function relationship of clostridial neurotoxins. J. Toxicol.–Toxin Reviews. 1999; 18: 95–112
  • Li L., Singh B.R. Isolation of synaptotagmin as a receptor for types A and E botulinum neurotoxin and analysis of their comparative binding using a new microtiter plate assay. J. Nat. Toxins. 1998; 7: 215–226
  • Li L., Singh B.R. Spectroscopic analysis of pH-induced changes in the molecular features of type A botulinum neurotoxin light chain. Biochemistry 2000; 39: 6466–6474
  • Ligler F.S., Taitt C.R., Shriver-Lake L.C., Sapsford K.E., Shubin Y., Golden J.P. Array biosensor for detection of toxins. Anal. Bio. 2003; 377: 469–477
  • Lim D.V. Detection of microorganisms and toxins with evanescent wave fiber–optic biosensors. Proc. IEEE. 2003; 91: 902–907
  • Lizard P.M., Huang X., Zhu Z., Bray-Ward P., Thomas D.C., Ward D.C. Mutation detection and single molecule counting using isothermal rolling circle amplification. Nat. Genet 1998; 19: 225–232
  • Lomneth R., Martin T.F., DasGupta B.R. Botulinum neurotoxin light chain inhibits norepinephrine secretion in PC12 cells at an intracellular membranous or cytoskeletal site. J. Neurochem. 1991; 57: 1413–1421
  • Ma H., Zhou B., Kim Y., Janda K.D. A cyclic peptide–polymer probe for the detection of Clostridium botulinum neurotoxin serotype A. Toxicon. 2006 2006; 47: 901–908
  • MacDonald K.L., Rutherford G.W., Friedman S.M., Dietz J.R., Kaye B.R., McKinley G.F., Tenney J.H., Cohen M.L. Botulism and botulism-like illness in chronic drug abusers. Ann. Intern. Med. 1985; 102: 616–618
  • Mason J.T., Xu L., Sheng Z.M., O’Leary T.J. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat. Biotechnol. 2006; 24: 555–557
  • McCroskey L.M., Hatheway C.L. Laboratory findings in four cases of adult botulism suggest colonization of the intestinal tract. J. Clin. Microbiol. 1988; 26: 1052–1054
  • McCroskey L.M., Hatheway C.L., Fenicia L., Paasolini B., Aureli P. Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J. Clin. Microbiol. 1986; 23: 201–202
  • Midura T.F., Arnon S.S. Infant botulism. Identification of Clostridium botulinum and its toxin in faeces. Lancet 1976; 2: 934–936
  • Montecucco C. How do tetanus and botulinum toxins bind to neuronal membrane. Trends Biochem. Sci 1986; 11: 314–317
  • Montecucco C., Molgo J. Botulinal neurotoxins: revival of an old killer. Curr. Opin. Pharmacol. 2005; 5: 274–279
  • Montecucco C., Rossetto O., Schiavo G. Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol 2004; 12: 442–446
  • Montecucco C., Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Quart. Rev. Biophys. 1996; 28: 423–472
  • Moriishi K., Koura M., Fujii N., Fujinaga Y., Igoue K., Syuto B., Oguma K. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. App. Environ. Microbio. 1996; 62: 662–667
  • Nam J.M., Stoeva S.I., Mirkin C.A. Bio-bar-code-based DNA detection with PCR–like sensitivity. J Am Chem Soc 2004; 126: 5932–5933
  • Nam J.M., Thaxton C.S., Mirkin C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003; 301: 1884–1886
  • Niemeyer C.M., Adler M., Wacker R. Immuno-PCR: high sensitivity detection of proteins by nucleic acid amplification. Trends Biotechnol. 2005 2005; 23: 208–216
  • Nishiki T., Kamata Y., Nemoto Y., Omori A., Ito T., Takahashi M., Kozaki S. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem 1994; 269: 10498–10503
  • Nishiki T., Tokuyama Y., Kamata Y., Nemoto Y., Yoshida A., Sato K., Sekiguchi M., Takahashi M., Kozaki S. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 1996; 378: 253–257
  • Nishiki T., Tokuyama Y., Kamata Y., Nemoto Y., Yoshida A., Sekiguchi M., Takahashi M., Kozaki S. Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA. Neurosci. Lett. 1996; 208: 105–108
  • Ogert R.A., Brown J.E., Singh B.R., Shriver-Lake L.C., Ligler F.S. Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor. Anal. Biochem. 1992; 205: 306–312
  • Pang S., Smith J., Onley D., Reeve J., Walker M., Foy C. A comparability study of the emerging protein array platforms with established ELISA procedures. J Immunol Methods. 2005; 302: 1–12
  • Poli M.A., Rivera V.R., Neal D. Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes E and F. Toxicon 2002; 40: 797–802
  • Potter M., Meng J., Kimsey P. An ELISA for detection of botulinal toxin types A, B, and E in inoculated food samples. J. Food Protection. 1993; 56: 856–861
  • Puffer E.B., Lomneth R.B., Sarkar H.K., Singh B.R. Differential roles of developmentally distinct SNAP-25 isoforms in the neurotransmitter release process. Biochemistry 2001; 40: 9374–9378
  • Purkiss J.R., Friis L.M., Doward S., Quinn C.P. Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology 2001; 22: 447–453
  • Qian S., Bau H.H. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal. Biochem. 2003; 322: 89–98
  • Rivera V.R., Gamez F.J., Keener W.K., White J.A., Poli M.A. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal. Biochem. 2006; 353: 248–256
  • Rong-Hwa S., Huey-Fen S., Hwan-Wun L., Shiao-Shek T. Colloidal gold–based immunochromatographic assay for detection of ricin. Toxicon 2002; 40: 255–258
  • Rouquette A.M., Desgruelles C., Laroche P. Evaluation of the new multiplexed immunoassay, FIDIS, for simultaneous quantitative determination of antinuclear antibodies and comparison with conventional methods. Am J Clin Pathol 2003; 120: 676–681
  • Rummel A., Karnath T., Henke T., Bigalke H., Binz T. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 2004; 279: 30865–30870
  • Rusconi C.P., Scardino E., Layzer J., Pitoc G.A., Ortel T.L., Monroe D., Sullenger B.A. RNA aptamers as reversible antagonists of coagulation factor Ixa. Nature 2002; 419: 90–94
  • Sangsuk L., Kools J., Andreadis J., Khumthalang T., Suthiwarakom K., Jittaprasartsilp C., Sawanpunyalert P., Peruski L., Maslanka S. Laboratory aspects of an outbreak of Clostridium botulinum in northern Thailand, 2006. The 43rd Interagency Botulism Research Coordinating Committee Meeting. Silver Spring, MD 2006, November 14–16, 2006
  • Sano T., Smith C.L., Cantor C.R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 1992; 258: 120–122
  • Sapsford K.E., Taitt C.R., Loo N., Ligler F.S. Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Microbiol. 2005; 71: 5590–5592
  • Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino deLaureto P., DasGupta B.R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992; 359: 832–835
  • Schiavo G., Malizio C., Trimble W.S., Polverino deLaureto P., Milan G., Sugiyama H., Johnson E.A., Montecucco C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J. Biol. Chem. 1994; 269: 20213–20216
  • Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992; 11: 3577–3583
  • Schiavo G., Rossetto O., Catsicas S., Polverino deLaureto P., DasGupta B.R., Benfenati F., Montecucco C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem 1993; 268: 23784–23787
  • Schiavo G., Shone C.C., Rossetto O., Alexander F.C., Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 1993; 268: 11516–11519
  • Schiavo G., Shone C.C., Bennett M.K., Scheller R.H., Montecucco C. Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins. J. Biol. Chem. 1995; 270: 10566–10570
  • Schmidt J.J., Stafford R.G., Millard C.B. High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal. Biochem. 2001; 296: 130–137
  • Schweitzer B., Stephen K. Combining nucleic acid amplification and detection. Curr. Opin. Biotech 2001; 12: 21–27
  • Schweitzer B., Wiltshire S., Lambert J., O’Malley S., Kukanskis K., Zhu Z., Kingsmore S.F., Lizardi P.M., Ward D.C. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc. Natl. Acad. Sci. USA 2000; 97: 10113–10119
  • Sharma S.K., Eblen B.S., Bull R.L., Burr D.H., Whiting R.C. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl. Environ. Microbiol. 2005; 71: 3935–3941
  • Sharma S.K., Ferreira J.L., Eblen B.S., Whiting R.C. Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ. Microbiol. 2006; 72: 1231–1238
  • Sharma S.K., Whiting R.C. Methods for detection of Clostridium botulinum toxin in foods. J. Food Prot. 2005; 68: 1256–1263
  • Sheridan R.E., Deshpande S.S, Smith T. Comparison of in vivo and in vitro mouse bioassays for botulinum toxin antagonists. J. Appl. Toxicol 1999; 19(Suppl 1)S29–33
  • Sheridan R.E., Smith T.J., Adler M. Primary cell culture for evaluation of botulinum neurotoxin antagonists. Toxicon. 2005; 45: 377–382
  • Shone C., Ferreira J., Boyer A., Cirino N., Egan C., Evans E., Kools J., Sharma S. The 5th International Conference on Basic and Therapeutic Aspects of Botulinum and Tetanus Neurotoxins. Workshop review: assays and detection. Neurotox Res 2006; 9: 205–216
  • Shone C., Wilton-Smith P., Appleton N., Hambleton P., Modi N., Gatley S., Melling J. Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse assay. Appl. Environ. Microbiol. 1985; 50: 63–67
  • Simpson L.L. The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 1981; 33: 155–188
  • Simpson L.L. Identification of the major steps in botulinum toxin action. Annu Rev Pharmacol Toxicol 2004; 44: 167–193
  • Singer J.M., Plotz C.M. The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis. Am. J. Med. 1956; 21: 888
  • Singh B.R. Intimate details of the most poisonous poison. Nature Struct. Biol. 2000; 7: 617–619
  • Singh B.R. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox. Res. 2006; 9: 73–92
  • Singh B.R., Lopes T., Silvia M.A. Immunochemical characterization of type A botulinum neurotoxin in its purified and complexed forms. Toxicon 1996; 34: 267–275
  • Singh B.R., Silvia M.A. Detection of botulinum neurotoxins using optical fiber-based biosensor. Adv. Exp. Med. Biol. 1996; 391: 499–508
  • Smith T.J., Lou J., Geren I.N., Forsyth C.M., Tsai R., Laporte S.J., Tepp W.H., Bradshaw M., Johnson E.A., Smith L.A., Marks J.D. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect Immun 2005; 73: 5450–5457
  • Smits H.L., Eapen C.K., Sugathan S., Kuriakose M., Gasem M.H., Yersin C., Sasaki D., Pujianto B., Vestering M., Abdoel T.H., Gussenhoven G.C. Lateral-flow assay for rapid serodiagnosis of human leptospirosis. Clin. Diagn. Lab. Immunol. 2001; 8: 166–169
  • Sobel J., Tucker N., Sulka A., McLaughlin J., Maslanka S. Foodborne botulism in the United States, 1990–2000. Emerg Infect Dis 2004; 10: 1606–1611
  • Summerbell R.C., Levesque C.A., Seifert K.A., Bovers M., Fell J.W., Diaz M.R., Boekhout T., de Hoog G.S., Stalpers J., Crous P.W. Microcoding: the second step in DNA barcoding. Philos Trans R Soc Lond B Biol Sci. 2005; 360: 1897–1903
  • Szilagyi M., Rivera V.R., Neal D., Merrill G.A., Poli M.A. Development of sensitive colorimetric capture elisas for Clostridium botulinum neurotoxin serotypes A and B. Toxicon 2000; 38: 381–389
  • Takahashi M, Kameyama S., Sakaguchi G. Assay in mice for low levels of Clostridium botulinum toxin. Int. J. Food Microbiol. 1990; 11: 271–277
  • Tan W, Wang K., Drake T.J. Molecular beacons. Curr. Opin. Chem. Biol 2004; 8: 547–553
  • Templin M.F., Stoll D., Schrenk M., Traub P.C., Vohringer C.F., Joos T.O. Protein microarray technology. Trends. in Biotech. 2002; 20: 160–166
  • Vignali D.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods. 2000; 243: 243–255
  • Wein L.M., Liu Y. Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc. Natl. Acad. Sci. USA 2005; 102: 9984–9989
  • Wictome M., Newton K.A., Jameson K., Dunnigan P., Clarke S., Gaze J., Tauk A., Foster K.A., Shone C.C. Development of an in vitro bioassay for Clostidium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl. Environ. Microbiol 1999; 65: 3787–3792
  • Wictome M., Newton K.A., Jameson K., Dunnigan P., Clarke S., Gaze J., Tauk A., Foster K.A., Shone C.C. Development of in vitro assays for the detection of botulinum toxins in food. FEMS Immuno. Med. Microbiol. 1999; 24: 319–323
  • Wittmann C., Schreiter P.Y. Analysis of terbuthylazine in soil samples by two test strip immunoassay formats using reflectance. J. Agric. Food Chem. 1999; 47: 2733–2737
  • Wu H.C., Huang Y.L., Lai S.C., Huang Y.Y., Shaio M.F. Detection of Clostridium botulinum neurotoxin type A using immuno-PCR. Lett. Appl. Microbiol. 2001; 32: 321–325
  • Yamasaki S., Baumeister A., Binz T., Blasi J., Link E., Cornille F., Roques B., Fykse E.M., Sudhof T.C., Jahn R. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 1994; 269: 12764–12772
  • Yamasaki S., Binz T., Hayashi T., Szabo E., Yamasaki N., Eklund M., Jahn R., Niemann H. Botulinum neurotoxin type G proteolyses the Ala81-Ala82 bond of rat synaptobrevin 2. Biochem. Biophys. Res. Commun 1994; 200: 829–835
  • Zhou C., Jiang Y., Hou S., Ma B., Fang X., Li M. Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. Anal. Bio Chem. 2006; 384: 1175–1180
  • Zhu H., Snyder M. Protein chip technology. Curr. Opin. Chem. Biol 2003; 7: 55–63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.