220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Statistical methods to control for confounders in rare disease settings that use external control

, &
Received 16 Aug 2023, Accepted 05 Apr 2024, Published online: 02 May 2024

References

  • Austin, P. C. 2009. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses. The International Journal of Biostatistics 5 (1). doi:10.2202/1557-4679.1146.
  • Austin, P. C. 2011. Optimal caliper widths for propensity‐score matching when estimating differences in means and differences in proportions in observational studies. Pharmaceutical Statistics 10 (2):150–161. doi:10.1002/pst.433.
  • Austin, P. C., and D. S. Small. 2014. The use of bootstrapping when using propensity‐score matching without replacement: A simulation study. Statistics in Medicine 33 (24):4306–4319. doi:10.1002/sim.6276.
  • Bang, H., and J. M. Robins. 2005. Doubly robust estimation in missing data and causal inference models. Biometrics Bulletin 61 (4):962–973. doi:10.1111/j.1541-0420.2005.00377.x.
  • Coyle, J., and M. J. van der Laan. 2018. Targeted Bootstrap. In Targeted Learning in Data Science. Springer Series in Statistics. Cham: Springer.
  • Food and Drug Administration US. 2020 16, April. Rare Diseases: Common Issues in Drug Development Guidance for Industry. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-common-issues-drug-development-guidance-industry.
  • Food and Drug Administration US. 2022 5, December. Medical Products for Rare Diseases and Conditions. https://www.fda.gov/industry/medical-products-rare-diseases-and-conditions.
  • Fortin, S. P., S. S. Johnston, and M. J. Schuemie. 2021. Applied comparison of large‐scale propensity score matching and cardinality matching for causal inference in observational research. BMC Medical Research Methodology 21 (1):1–11. doi:10.1186/s12874-021-01282-1.
  • Gagne, J. J., L. Thompson, K. O’Keefe, and A. S. Kesselheim. 2014. Innovative research methods for studying treatments for rare diseases: Methodological review. BMJ: British Medical Journal 349 (nov24 15):g6802–g6802. doi:10.1136/bmj.g6802.
  • Ghadessi, M., R. Tang, J. Zhou, R. Liu, C. Wang, K. Toyoizumi, C. Mei, L. Zhang, C. Q. Deng, R. A. Beckman, et al. 2020. A roadmap to using historical controls in clinical trials–by Drug Information Association Adaptive Design Scientific Working Group (DIA-ADSWG). Orphanet Journal of Rare Diseases 15(1):1–19. doi:10.1186/s13023-020-1332-x.
  • Greifer, N. Estimating effects after matching. MatchIt: Nonparametric preprocessing for parametric causal inference. 2022. Accessed 3 13 2024. https://cran.r-project.org/web/packages/MatchIt/vignettes/estimating-effects.html.
  • Gruber, S., and M. van der Laan. 2012. tmle: An R package for targeted maximum likelihood estimation. Journal of Statistical Software 51 (13):1–35. doi:10.18637/jss.v051.i13.
  • Heckman, J. J., Ichimura, H., and Todd, P. E. 1997. Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme. The review of economic studies 64 (4):605–654.
  • Hernán, M. A., and J. M. Robins. 2016. Using big data to emulate a target trial when a randomized trial is not available. American Journal of Epidemiology 183 (8):758–764. doi:10.1093/aje/kwv254.
  • Hernán, M. A., and J. M. Robins. 2020. In Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
  • Hoover-Fong, J. E., K. J. Schulze, A. Y. Alade, M. B. Bober, E. Gough, S. S. Hashmi, J. T. Hecht, J. M. Legare, M. E. Little, P. Modaff, et al. 2021. Growth in achondroplasia including stature, weight, weight-for-height and head circumference from CLARITY: Achondroplasia natural history study—a multi-center retrospective cohort study of achondroplasia in the US. Orphanet Journal of Rare Diseases 16(1):1–19. doi:10.1186/s13023-021-02141-4.
  • Jahanshahi, M., K. Gregg, G. Davis, A. Ndu, V. Miller, J. Vockley, C. Ollivier, T. Franolic, and S. Sakai. 2021. The use of external controls in FDA regulatory decision making. Therapeutic Innovation & Regulatory Science 55 (5):1019–1035. doi:10.1007/s43441-021-00302-y.
  • Li, F., L. E. Thomas, and F. Li. 2019. Addressing extreme propensity scores via the overlap weights. American Journal of Epidemiology 188 (1):250–257. doi:10.1093/aje/kwy201.
  • Loiseau, N., P. Trichelair, M. He, M. Andreux, M. Zaslavskiy, G. Wainrib, Blum MG. 2022. External control arm analysis: An evaluation of propensity score approaches, G-computation, and doubly debiased machine learning. BMC Medical Research Methodology 22(1):1–13. doi:10.1186/s12874-022-01799-z.
  • Lok, J. J. 2021. How estimating nuisance parameters can reduce the variance (with consistent variance estimation). arXiv preprint arXiv: 2109.02690.
  • Lunceford, J. K., and M. Davidian. 2004. Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine 23 (19):2937–2960. doi:10.1002/sim.1903.
  • Luque‐Fernandez, M. A., M. Schomaker, B. Rachet, and M. E. Schnitzer. 2018. Targeted maximum likelihood estimation for a binary treatment: A tutorial. Statistics in Medicine 37 (16):2530–2546. doi:10.1002/sim.7628.
  • Mitani, A. A., and S. Haneuse. 2020. Small data challenges of studying rare diseases. JAMA network open 3 (3):e201965–e201965. doi:10.1001/jamanetworkopen.2020.1965.
  • Phillips, R. V., M. J. Van Der Laan, H. Lee, and S. Gruber. 2023. Practical considerations for specifying a super learner. International Journal of Epidemiology 52 (4):1276–1285.
  • PhRMA, O. 2022 19, October. Progress in Fighting Rare Diseases. https://www.phrma.org/resource-center/progress-in-fighting-rare-diseases.
  • Robins, J. M., M. A. Hernan, and B. Brumback. 2000. Marginal structural models and causal inference in epidemiology. Epidemiology 11 (5):550–560. doi:10.1097/00001648-200009000-00011.
  • Rosenbaum, P. R., and D. B. Rubin. 1983. The central role of the propensity score in observational studies for causal effects. Biometrika 70 (1):41–55. doi:10.1093/biomet/70.1.41.
  • Rubin, D. B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66 (5):688. doi:10.1037/h0037350.
  • Rubin, D. B. 1986. Statistics and causal inference: Comment: Which ifs have causal answers. Journal of the American Statistical Association 81 (396):961–962. doi:10.1080/01621459.1986.10478355.
  • Savarirayan, R., M. Irving, C. A. Bacino, B. Bostwick, J. Charrow, V. Cormier-Daire, K.-H. Le Quan Sang, P. Dickson, P. Harmatz, J. Phillips, et al. 2019. C-type natriuretic peptide analogue therapy in children with achondroplasia. New England Journal of Medicine 381(1):25–35. doi:10.1056/NEJMoa1813446.
  • Schuler, M. S., and S. Rose. 2017. Targeted maximum likelihood estimation for causal inference in observational studies. American Journal of Epidemiology 185 (1):65–73. doi:10.1093/aje/kww165.
  • Tan, X., S. Yang, W. Ye, D. E. Faries, I. Lipkovich, and Z. Kadziola. 2022. When doubly robust methods meet machine learning for estimating treatment effects from real-world data: A comparative study. arXiv preprint arXiv: 2204.10969.
  • Tibshirani, R. J., and B. Efron. 1993. An introduction to the bootstrap. New York: Chapman & Hall.
  • van der Laan, M. J., and S. Gruber. 2016. One-step targeted minimum loss-based estimation based on universal least favorable one-dimensional submodels. The International Journal of Biostatistics 12 (1):351–378.
  • Van der Laan, M.J., and S. Rose. 2011. Targeted learning: Causal inference for observational and experimental data. New York: Springer.
  • Van der Laan, M.J., and D. Rubin. 2006. Targeted maximum likelihood learning. The International Journal of Biostatistics 2 (1). doi:10.2202/1557-4679.1043.
  • Visconti, G., and J. R. Zubizarreta. 2018. Handling limited overlap in observational studies with cardinality matching. Observational Studies 4 (1):217–249. doi:10.1353/obs.2018.0012.
  • Wan, F. 2019. Matched or unmatched analyses with propensity-score–matched data? Statistics in Medicine 38 (2):289–300. doi:10.1002/sim.7976.
  • White, H. 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica: Journal of the Econometric Society 48 (4):817–838. doi:10.2307/1912934.
  • Yang, S., and Y. Zhang. 2023. Multiply robust matching estimators of average and quantile treatment effects. Scandinavian Journal of Statistics 50 (1):235–265. doi:10.1111/sjos.12585.
  • Zhang, Y., S. Yang, W. Ye, D. E. Faries, I. Lipkovich, and Z. Kadziola. 2022. Practical recommendations on double score matching for estimating causal effects. Statistics in Medicine 41 (8):1421–1445. doi:10.1002/sim.9289.
  • Zhou, T., G. Tong, F. Li, and L. E. Thomas. 2020. Psweight: An R package for propensity score weighting analysis. arXiv preprint arXiv: 2010.08893.
  • Zivich, P. N., and A. Breskin. 2021. Machine learning for causal inference: On the use of cross-fit estimators. Epidemiology 32 (3): 393–401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.