43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of precursor response characteristics and time-frequency vibration parameters of rock failure: a laboratory experimental method

, , , , , & show all
Received 28 Dec 2023, Accepted 19 Apr 2024, Published online: 30 Apr 2024

References

  • He M, Cheng T, Qiao Y, et al. A review of rockburst: experiments, theories, and simulations. J Rock Mech Geotech. 2023;15(5):1312–1353. doi: 10.1016/j.jrmge.2022.07.014
  • Luo Y, Gong F, Zhu C. Experimental investigation on stress-induced failure in D-Shaped hard rock tunnel under water-bearing and true triaxial compression conditions. B Eng Geol Environ. 2022;81(2):76. doi: 10.1007/s10064-021-02564-0
  • Lv Z, Yangsheng Z, Feng Z. Catastrophic failure mechanism of rock masses system and earthquake prediction based on percolation theory. Rock Mech Bull. 2022;1(1):100009. doi: 10.1016/j.rockmb.2022.100009
  • Fu JW, Guo MD, Haeri H, et al. A discrete element analysis of the indirect tensile failure in hollow Brazilian discs of bedded geo-materials. Strength Mater. 2022;54(3):462–472.
  • Fu JW, Haeri H, Sarfarazi V, et al. Modeling the ligament breakage mechanism in concrete specimens using a four-point bending test. Strength Mater. 2022;54(4):671–680.
  • Fu JW, Sarfarazi V, Naderi AA, et al. Physical test for analysis of failure behavior of embedded notches. Strength Mater. 2022;54(6):1145–1154.
  • Fu JW, Sarfarazi V, Naderi AA, et al. Calibrating a new compressive-to-tensile load-transferring device for determining the direct tensile strength of granite. Strength Mater. 2022;54(5):959–966.
  • Haeri H, Shahriar K, Marji MF, et al. Investigation of fracturing process of rock-like Brazilian disks containing three parallel cracks under compressive line loading. Strength Mater. 2014;46(3):404–416.
  • Tan L, Zhou Z, Cai X, et al. Analysis of mechanical behaviour and fracture interaction of multi-hole rock mass with dic measurement. Measurement. 2022;191:110794. doi: 10.1016/j.measurement.2022.110794
  • Tang Y, Zhang H, Guo X, et al. Literature survey and application of a full-field 3D-Dic technique to determine the damage characteristic of rock under triaxial compression. Int J Damage Mech. 2022;31(7):1082–1095. doi: 10.1177/10567895221089660
  • Gao L, Zhang W, Lu W, et al. Study on the effects of temperature and immersion on the acoustic emission and electromagnetic radiation signals of coal rock damage under load. Eng Geol. 2022;297:106503. doi: 10.1016/j.enggeo.2021.106503
  • Lin P, Wei P, Wang C, et al. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. J Rock Mech Geotech. 2021;13(4):798–810. doi: 10.1016/j.jrmge.2021.01.001
  • Du MWS. Experimental study on acoustic emission (ae) characteristics and crack classification during rock fracture in several basic lab tests. Int J Rock Mech Min. 2020;133(1):104411. doi: 10.1016/j.ijrmms.2020.104411
  • Liu J, Wang K, Zhao M, et al. Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image. Nondestr Test Eval. 2023:1–25. doi: 10.1080/10589759.2023.2250513
  • Guerin A, Jaboyedoff M, Collins BD, et al. Detection of rock bridges by infrared thermal imaging and modeling. Sci Rep-UK. 2019;9(1):13138.
  • Huang J, Liu S, Gao X, et al. Experimental study of the thermal infrared emissivity variation of loaded rock and its significance. Remote Sens-Basel. 2018;10(6):818. doi: 10.3390/rs10060818
  • Liu W, Ma L, Sun H, et al. Using the characteristics of infrared radiation B-Value during the rock fracture process to offer a precursor for serious failure. Infrared Phys Technpl. 2021;114:103644. doi: 10.1016/j.infrared.2021.103644
  • Wu L, Liu S, Wu Y, et al. Changes in infrared radiation with rock deformation. Int J Rock Mech Min. 2002;39(6):825–831. doi: 10.1016/S1365-1609(02)00049-7
  • Mulaveesala R, Arora V, Rani A. Coded thermal wave imaging technique for infrared non-destructive testing and evaluation. Nondestr Test Eval. 2019;34(3):243–253. doi: 10.1080/10589759.2019.1597356
  • Fan ZD, Xie HP, Zhang R, et al. Characterization of anisotropic mode II fracture behaviors of a typical layered rock combining ae and Dic Techniques. Eng Fract Mech. 2022;271:108599. doi: 10.1016/j.engfracmech.2022.108599
  • Sun J, Su B. Coal–rock interface detection on the basis of image texture features. Int J Min Sci Techno. 2013;23(5):681–687. doi: 10.1016/j.ijmst.2013.08.011
  • Wang P, Liu Q, Zhang Y, et al. Identifying rock fracture precursor by multivariate analysis based on the digital image correlation technique. Theor Appl Fract Mec. 2023;126:103987. doi: 10.1016/j.tafmec.2023.103987
  • Yun T, Xiyao Z, Yating T, et al. Crack extension at the concrete–rock interface damaged by high-pressure water environment: dic research. Theor Appl Fract Mec. 2023;126:126. doi: 10.1016/j.tafmec.2023.103966
  • Cao A, Jing G, Ding Y, et al. Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression. Saf Sci. 2019;116:86–96. doi: 10.1016/j.ssci.2019.03.003
  • Yang J, Mu Z, Yang S. Experimental study of acoustic emission multi-parameter information characterizing rock crack development. Eng Fract Mech. 2020;232:107045. doi: 10.1016/j.engfracmech.2020.107045
  • Liang P, Li Z, Li Q, et al. The critical slowing-down characteristics of multi-physical field monitoring information about the brittle failure of rock under three-point bending. Nondestr Test Eval. 2023;39(3):701–723. doi: 10.1080/10589759.2023.2246633
  • Wang P, Xu JY, Liu S. Ultrasonic method to evaluate the residual properties of thermally damaged sandstone based on time-frequency analysis. Nondestr Test Eval. 2015;30(1):74–88. doi: 10.1080/10589759.2014.1002838
  • Feng G, Wang Z, Li Z, et al. Experimental study on Re-crushing behaviour of crushed limestone based on acoustic emission location method. Nondestr Test Eval. 2023:1–17. doi: 10.1080/10589759.2023.2287069
  • Huang Q, Zhao K, Xiao W, et al. Deformation failure and damage evolution law of weathered granite under triaxial compression. Nondestr Test Eval. 2023:1–25. doi: 10.1080/10589759.2023.2283710
  • Tang MW, Ding YC. High-speed image analysis of the rock fracture process under the impact of blasting. J Min Sci+. 2019;55(4):575–581. doi: 10.1134/S1062739119045928
  • Xing HZ, Zhang QB, Braithwaite CH, et al. High-speed photography and digital optical measurement techniques for geomaterials: fundamentals and applications. Rock Mech Rock Eng. 2017;50(6):1611–1659.
  • Xing HZ, Zhang QB, Ruan D, et al. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation. Int J Impact Eng. 2018;113:61–72. doi: 10.1016/j.ijimpeng.2017.11.011
  • Ye H, Li X, Lei T, et al. Dynamic response characteristics and damage rule of graphite ore rock under different strain rates. Sci Rep-UK. 2023;13(1):2151. doi: 10.1038/s41598-023-28947-9
  • Tang YJ, Liu J, Hao TX, et al. Failure mechanics and infrared radiation characteristics of soft coal at various moisture contents. Geomat Nat Haz Risk. 2021;12(1):1371–1385.
  • Hao TX, Li F, Tang YJ, et al. Infrared precursor of pre-cracked coal failure based on critical slowing down. Geomat Nat Haz Risk. 2022;13(1):1682–1699. doi: 10.1080/19475705.2022.2098068
  • Zhao WS, Xie PY, Chen WZ, et al. Mechanical behaviour of rock containing a persistent joint under uniaxial compression at different strain rates. Eur J Environ Civ En. 2023;28(2):243–264. doi: 10.1080/19648189.2023.2210633
  • Wei LK, Yuan Q, Ren YW, et al. Analysis of failure mechanics and energy evolution of sandstone under uniaxial loading based on dic technology. Front Earth Sci. 2022;10:10. doi: 10.3389/feart.2022.814292
  • Feng G, Du X, Zhang Y. ‘Optical-acoustic-stress’ responses in failure progress of cemented gangue-fly ash backfill material under uniaxial compression. Nondestr Test Eval. 2019;34(2):135–146. doi: 10.1080/10589759.2019.1576175
  • Li YH, Liu JP. Location of acoustic emission events and changes of spatial correlation length in rock during uniaxial compression. Mater Res Innovations. 2011;15(sup1):S543–S546. doi: 10.1179/143307511X12858957676551
  • Niu Y, Zhou X, Zhou L. Fracture damage prediction in fissured red sandstone under uniaxial compression: Acoustic emission B-value analysis. Fatigue Fract Eng Mat Struct. 2020;43(1):175–190. doi: 10.1111/ffe.13113
  • Yan X, Su H, Ai L, et al. Study on stage characteristics of hydraulic concrete fracture under uniaxial compression using acoustic emission. Nondestr Test Eval. 2023:1–30. doi: 10.1080/10589759.2023.2255362
  • Providakis CP, Mousteraki MG, Providaki GC. Operational modal analysis of historical buildings and finite element model updating using Α laser scanning vibrometer. Infrastructures-Base. 2023;8(2):37. doi: 10.3390/infrastructures8020037
  • Ri S, Wang Q, Tsuda H, et al. Deflection measurement of bridge using images captured under the bridge by sampling moiré method. Exp Techniques. 2023;47(5):1085–1095. doi: 10.1007/s40799-022-00616-y
  • Kulkarni S, Hurlebaus S. Nondestructive testing of overhead transmission lines—numerical and experimental investigation. AIP Conf Proc. 2009;1096(1):1566–1571. doi: 10.1063/1.3114144
  • Cao J, Cheng X, Shang J, et al. Structural design and thermal analysis of the vehicle lidar system. Opt Eng. 2020;59(8):84105. doi: 10.1117/1.OE.59.8.084105
  • Derusova D, Vavilov V, Sfarra S, et al. Ultrasonic spectroscopic analysis of impact damage in composites by using laser vibrometry. Compos Struct. 2019;211:221–228. doi: 10.1016/j.compstruct.2018.12.050
  • Segers J, Kersemans M, Verboven E, et al. Investigation to local defect resonance for non-destructive testing of composites. Proceedings. 2018;2(8). doi: 10.3390/ICEM18-05273
  • Chelghoum A. Proceedings of the 3rd gas processing symposium: non destructive testing on lng tanks using laser doppler vibrometry. Amsterdam [NE]: Elsevier BV; 2012.
  • Jia B, Wu Z, Du Y. Real-time stability assessment of unstable rocks based on fundamental natural frequency. Int J Rock Mech Min. 2019;124:104134. doi: 10.1016/j.ijrmms.2019.104134
  • Jia Y, Song G, Wang L, et al. Research on stability evaluation of perilous rock on soil slope based on natural vibration frequency. Appl Sci. 2023;13(4):2406. doi: 10.3390/app13042406
  • Jia Y, Li Z, Tong J, et al. Study on early identification of landslide perilous rocks based on multi-dynamics parameters. Sustainability-Basel. 2023;15(7):6296.
  • Jiang T, Wan L, Wang W, et al. Study on staged damage behaviors of rock-like materials with different brittleness degrees based on multiple parameters. Materials. 2023;16(6):2334.
  • Xie Q, Duan J, Ban Y, et al. Laser vibration characteristics of marble specimens and failure criterion. Appl Sci. 2022;12(4):2223. doi: 10.3390/app12042223
  • Le H, Sun S, Wei J. Influence of types of grouting materials on compressive strength and crack behavior of rocklike specimens with single grout-infilled flaw under axial loads. J Mater Civil Eng. 2019;31(1):6018022. doi: 10.1061/(ASCE)MT.1943-5533.0002554
  • Khan NM, Ma L, Cao K, et al. Prediction of an early failure point using infrared radiation characteristics and energy evolution for sandstone with different water contents. Bull Eng Geol Environ. 2021;80(9):6913–6936.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.