89
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Predicting corrosion behaviour of steel reinforcement in eco-friendly coral aggregate concrete based on hybrid machine learning methods

, , , &
Received 27 Feb 2024, Accepted 22 Apr 2024, Published online: 30 Apr 2024

References

  • Zhang B, Zhu H, Dong ZQ, et al. Mechanical properties and durability of FRP-reinforced coral aggregate concrete structures: a critical review. Mater Today Commun. 2023;35:105656. doi: 10.1016/j.mtcomm.2023.105656
  • Yang ZY, Zhan X, Zhu H, et al. Mesoscopic investigation of the matrix pores and ITZ effects on the mechanical properties of seawater sea-sand coral aggregate concrete. J Build Eng. 2024;109375. doi: 10.1016/j.jobe.2024.109375
  • Sun Z, Zhang L, Niu D, et al. Time-varying model for predicting the resistivity of coral aggregate concrete. Constr Build Mater. 2020;265:120588. doi: 10.1016/j.conbuildmat.2020.120588
  • Yang ZY, Lu F, Zhan X, et al. Mechanical properties and mesoscopic damage characteristics of basalt fibre-reinforced seawater sea-sand slag-based geopolymer concrete. J Buil Eng. 2024;84:108688. doi: 10.1016/j.jobe.2024.108688
  • Sun Z, Niu D, Wang X, et al. Bond behavior of coral aggregate concrete and corroded Cr alloy steel bar. J Buil Eng. 2022;61:105294. doi: 10.1016/j.jobe.2022.105294
  • Yang ZY, Zhan X, Zhu H, et al. Performance-based alkali-activated seawater sea-sand concrete: Mixture optimization for mechanical, environmental, and economical objectives. Constr Build Mater. 2020;409:134156. doi: 10.1016/j.conbuildmat.2023.134156
  • Sun Z, Niu D, Luo D, et al. Hybrid machine learning-based prediction model for the bond strength of corroded Cr alloy-reinforced coral aggregate concrete. Mater Today Commun. 2023;35:106141. doi: 10.1016/j.mtcomm.2023.106141
  • Zhang B, Zhu H, Li F, et al. Compressive stress-strain behavior of seawater coral aggregate concrete incorporating eco-efficient alkali-activated slag materials. Constr Build Mater. 2021;299:123886. doi: 10.1016/j.conbuildmat.2021.123886
  • Wang G, Wu Q, Zhou H, et al. Diffusion of chloride ion in coral aggregate seawater concrete under marine environment. Constr Build Mater. 2021;284:122821. doi: 10.1016/j.conbuildmat.2021.122821
  • Da B, Chen Y, Yu H, et al. Preparation technology, mechanical properties and durability of coral aggregate seawater concrete in the island-reef environment. J Clean Prod. 2022;339:130572. doi: 10.1016/j.jclepro.2022.130572
  • Li YL, Sun Z, Li YQ. Exploring the shear performance and predictive shear capacity of corroded RC columns utilizing the modified compression-field theory: An investigative study. Eng Struct. 2024;302. doi: 10.1016/j.engstruct.2023.117390
  • Da B, Yu H, Ma H, et al. Electrochemical study on steel corrosion in coral aggregate seawater concrete. Emerg Mater Res. 2020;9(3):642–654. doi: 10.1680/jemmr.19.00105
  • Li YL, Sun Zhen, Li YQ. Time-dependent combined index seismic resilience assessment of shear-critical RC bridge piers with height-varying corrosion. Eng Struct. 2024;308. doi: 10.1016/j.engstruct.2024.117957
  • Liu S, Wang X, Ali YMS, et al. Experimental study on eccentric compression behavior of slender rectangular concrete columns reinforced with steel and BFRP bars. Eng Struct. 2023;293:116626. doi: 10.1016/j.engstruct.2023.116626
  • Sharifi-Asl S, Mao F, Lu P, et al. Exploration of the effect of chloride ion concentration and temperature on pitting corrosion of carbon steel in saturated Ca (OH)2 solution. Corros Sci. 2015;98:708–715. doi: 10.1016/j.corsci.2015.06.010
  • Angst U, Elsener B, Larsen CK, et al. Critical chloride content in reinforced concrete—A review. Cement Concr Res. 2009;39(12):1122–1138. doi: 10.1016/j.cemconres.2009.08.006
  • Niu D, Zhang L, Fu Q, et al. Critical conditions and life prediction of reinforcement corrosion in coral aggregate concrete. Constr Build Mater. 2020;238:117685. doi: 10.1016/j.conbuildmat.2019.117685
  • Zhang L, Niu D, Wen B, et al. Initial-corrosion condition behavior of the Cr and Al alloy steel bars in coral concrete for marine construction. Cem Concr Compos. 2021;120:104051. doi: 10.1016/j.cemconcomp.2021.104051
  • Wu Z, Yu H, Ma H, et al. Rebar corrosion in coral aggregate concrete: determination of chloride threshold by LPR. Corros Sci. 2020;163:108238. doi: 10.1016/j.corsci.2019.108238
  • Wu Z, Yu H, Ma H, et al. Rebar corrosion behavior of coral aggregate seawater concrete by electrochemical techniques. Anti-Corrosion Methods Materials. 2020;67(1):59–72. doi: 10.1108/ACMM-05-2019-2128
  • Nguyen NH, Vo TP, Lee S, et al. Heuristic algorithm-based semi-empirical formulas for estimating the compressive strength of the normal and high performance concrete. Constr Build Mater. 2021;304:124467. doi: 10.1016/j.conbuildmat.2021.124467
  • Yang Z, Zhu H, Zhang B, et al. Short-term creep behaviors of seawater sea-sand coral aggregate concrete: An experimental study with Rheological model and neural network. Constr Build Mater. 2023;363:129786. doi: 10.1016/j.conbuildmat.2022.129786
  • Mahmood W, Mohammed AS, Sihag P, et al. Interpreting the experimental results of compressive strength of hand-mixed cement-grouted sands using various mathematical approaches. Arch Civil Mech Eng. 2021;22(1):19. doi: 10.1007/s43452-021-00341-0
  • Emad W, Mohammed AS, Kurda R, et al. Prediction of concrete materials compressive strength using surrogate models. Structures. 2022;46:1243–1267. doi: 10.1016/j.istruc.2022.11.002
  • Asteris PG, Roussis PC, Douvika MG. Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors. 2017;17(6):1344. doi: 10.3390/s17061344
  • Asteris PG, Kolovos KG. Self-compacting concrete strength prediction using surrogate models. Neural Comput Appl. 2019;31(1):409–424. doi: 10.1007/s00521-017-3007-7
  • Alkayem NF, Shen L, Mayya A, et al. Prediction of concrete and FRC properties at high temperature using machine and deep learning: a review of recent advances and future perspectives. J Buil Eng. 2023;83:108369. doi: 10.1016/j.jobe.2023.108369
  • Sathiparan N, Jeyananthan P. Predicting compressive strength of quarry waste-based geopolymer mortar using machine learning algorithms incorporating mix design and ultrasonic pulse velocity. Case Stud NondestrTest Eval. 2024;1–24. doi: 10.1080/10589759.2024.2304257
  • Zhou S, Lei Y, Zhang ZX, et al. Estimating dynamic compressive strength of rock subjected to freeze-thaw weathering by data-driven models and non-destructive rock properties. Case Stud NondestrTest Eval. 2024:1–24. doi: 10.1080/10589759.2024.2313569
  • Lin X, Zhu G, Yu S, et al. Prediction of corrosion degree of reinforced concrete based on improved QPSO-neural network. Case Stud NondestrTest Eval. 2023;38(3):412–430. doi: 10.1080/10589759.2022.2122967
  • Zhu Y, Macdonald DD, Qiu J, et al. Corrosion of rebar in concrete. Part III: Artificial Neural Network analysis of chloride threshold data. Corros Sci. 2021;185:109438. doi: 10.1016/j.corsci.2021.109438
  • Chun P, Ujike I, Mishima K, et al. Random forest-based evaluation technique for internal damage in reinforced concrete featuring multiple nondestructive testing results. Constr Build Mater. 2020;253:119238. doi: 10.1016/j.conbuildmat.2020.119238
  • Zhou Y, Gao L, Fan X, et al. Prediction of concrete structure service life based on the principle of neural connections in brain circuits. NeuroQuantology. 2018;16(5): doi: 10.14704/nq.2018.16.5.1398
  • Atha DJ, Jahanshahi MR. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Health Monit. 2018;17(5):1110–1128. doi: 10.1177/1475921717737051
  • Huang D, Niu D, Zheng H, et al. Study on chloride transport performance of eco-friendly coral aggregate concrete in marine environment. Constr Build Mater. 2020;258:120272. doi: 10.1016/j.conbuildmat.2020.120272
  • Huang D, Niu D, Su L, et al. Diffusion behavior of chloride in coral aggregate concrete in marine salt-spray environment. Constr Build Mater. 2022;316:125878. doi: 10.1016/j.conbuildmat.2021.125878
  • Huang D, Niu D, Su L, et al. Durability of coral aggregate concrete under coupling action of sulfate, chloride and drying-wetting cycles. Case Studies Construction Mater. 2022;16:e01003. doi: 10.1016/j.cscm.2022.e01003
  • Da B. Study on preparation technology, durability and mechanical properties of components of high strength whole coral seawater concrete. Nanjing University of Aeronautics and Astronautics; 2017.
  • Da B, Yu H, Ma H, et al. Chloride diffusion study of coral concrete in a marine environment. Constr Build Mater. 2016;123:47–58. doi: 10.1016/j.conbuildmat.2016.06.135
  • Wang Y, Zhang S, Niu D, et al. Effects of silica fume and blast furnace slag on the mechanical properties and chloride ion distribution of coral aggregate concrete. Constr Build Mater. 2019;214:648–658. doi: 10.1016/j.conbuildmat.2019.04.149
  • Niu D, Su L, Luo Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr Build Mater. 2020;237:117628. doi: 10.1016/j.conbuildmat.2019.117628
  • Wang Y, Zhang S, Niu D, et al. Strength and chloride ion distribution brought by aggregate of basalt fiber reinforced coral aggregate concrete. Constr Build Mater. 2020;234:117390. doi: 10.1016/j.conbuildmat.2019.117390
  • Ly A, Marsman M, Wagenmakers EJ. Analytic posteriors for Pearson’s correlation coefficient. Stat Neerl. 2018;72(1):4–13. doi: 10.1111/stan.12111
  • Mudelsee M. Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol. 2003;35:651–665. doi: 10.1023/B:MATG.0000002982.52104.02
  • Ao Y, Li H, Zhu L, et al. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J Pet Sci Eng. 2019;174:776–789. doi: 10.1016/j.petrol.2018.11.067
  • Singh U, Rizwan M, Alaraj M, et al. A machine learning-based gradient boosting regression approach for wind power production forecasting: a step towards smart grid environments. Energies. 2021;14(16):5196. doi: 10.3390/en14165196
  • Dhiman HS, Deb D, Guerrero JM. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. Renew Sust Energ Rev. 2019;108:369–379. doi: 10.1016/j.rser.2019.04.002
  • Sun Z, Li Y, Li Y, et al. Prediction of chloride ion concentration distribution in basalt-polypropylene fiber reinforced concrete based on optimized machine learning algorithm. Mater Today Commun. 2023;36:106565. doi: 10.1016/j.mtcomm.2023.106565
  • Lv W, Sun Z, Li Y, et al. Hybrid machine learning-based model for predicting chloride ion concentration in coral aggregate concrete and its ethically aligned graphical user interface design. Mater Today Commun. 2023;37:107053. doi: 10.1016/j.mtcomm.2023.107053
  • Jangir P, Buch H, Mirjalili S, et al. MOMPA: multi-objective marine predator algorithm for solving multi-objective optimization problems. Evol Int. 2023;16(1):169–195. doi: 10.1007/s12065-021-00649-z
  • Katoch S, Chauhan SS, Kumar V. A review on genetic algorithm: past, present, and future. Multimedia Tools Appl. 2021;80(5):8091–8126. doi: 10.1007/s11042-020-10139-6
  • Sun Z, Li Y, Li Y, et al. Investigation on compressive strength of coral aggregate concrete: hybrid machine learning models and experimental validation. J Buil Eng. 2024;82:108220. doi: 10.1016/j.jobe.2023.108220
  • Apostolopoulou M, Asteris PG, Armaghani DJ, et al. Mapping and holistic design of natural hydraulic lime mortars. Cement Concr Res. 2020;136:106167. doi: 10.1016/j.cemconres.2020.106167
  • Asteris PG, Koopialipoor M, Armaghani DJ, et al. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput Appl. 2021;33(19):13089–13121. doi: 10.1007/s00521-021-06004-8
  • Asteris PG, Armaghani DJ, Hatzigeorgiou GD, et al. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Comput Concrete, An Int J. 2019;24(5):469–488.
  • Armaghani DJ, Asteris PG. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Comput Appl. 2021;33(9):4501–4532. doi: 10.1007/s00521-020-05244-4
  • Farsi M, Mohamadian N, Ghorbani H, et al. Predicting formation pore-pressure from well-log data with hybrid machine-learning optimization algorithms. Nat Resour Res. 2021;30(5):3455–3481. doi: 10.1007/s11053-021-09852-2
  • Sun Z, Li Y, Yang Y, et al. Splitting tensile strength of basalt fiber reinforced coral aggregate concrete: optimized XGBoost models and experimental validation. Constr Build Mater. 2024;416:135133. doi: 10.1016/j.conbuildmat.2024.135133
  • Sun Z, Li Y, Bei Y, et al. Compressive strength resistance coefficient of sustainable concrete in sulfate environments: hybrid machine learning model and experimental verification. Mater Today Commun. 2024;39:108667. doi: 10.1016/j.mtcomm.2024.108667
  • Fu Q, Zhang Z, Zhao X, et al. Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: a review. J Buil Eng. 2022;50:104220. doi: 10.1016/j.jobe.2022.104220
  • Xu W, Tang Z, Xie Y, et al. Understanding the impact of synthesis parameters on the pore structure properties of fly ash-based geopolymers. Constr Build Mater. 2024;411:134640. doi: 10.1016/j.conbuildmat.2023.134640
  • Su L, Ma Z, Niu D, et al. Corrosion characteristics of basalt-polypropylene hybrid fiber concrete under the compound salt and drying-wetting cycles. Constr Build Mater. 2024;419:135529. doi: 10.1016/j.conbuildmat.2024.135529
  • Zhang B. Durability of sustainable geopolymer concrete: a critical review. Sustainable Mater Technol. 2024;40:e00882. doi: 10.1016/j.susmat.2024.e00882
  • Sun Z, Li Y, Su L, et al. Investigation of electrical resistivity for fiber-reinforced coral aggregate concrete. Constr Build Mater. 2024;414:135011. doi: 10.1016/j.conbuildmat.2024.135011
  • Chen Z, Wang X, Ding L, et al. Spalling resistance and mechanical properties of ultra-high performance concrete reinforced with multi-scale basalt fibers and hybrid fibers under elevated temperature. J Buil Eng. 2023;77:107435. doi: 10.1016/j.jobe.2023.107435
  • Chen Z, Wang X, Ding L, et al. Mechanical properties of a novel UHPC reinforced with macro basalt fibers. Constr Build Mater. 2023;377:131107. doi: 10.1016/j.conbuildmat.2023.131107
  • Huang D, Feng Y, Xia Q, et al. Research on mechanical properties and durability of early frozen concrete: A review. Constr Build Mater. 2024;425. doi: 10.1016/j.conbuildmat.2024.135988
  • Sun Z, He W, Niu D, et al. Resistivity prediction model for basalt–polypropylene fiber-reinforced concrete. Buildings. 2022;13(1):84. doi: 10.3390/buildings13010084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.