960
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting intensive care need in women with preeclampsia using machine learning – a pilot study

, , & ORCID Icon
Article: 2312165 | Received 04 Sep 2023, Accepted 02 Jan 2024, Published online: 22 Feb 2024

References

  • Sarosh Rana EL, Granger JP, Ananth Karumanchi S. Preeclampsia pathophysiology, challenges and perspectives. Circ Res. 2019;124(7):1094–10. doi: 10.1161/CIRCRESAHA.118.313276
  • Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2):S907–s927. doi: 10.1016/j.ajog.2020.09.047
  • Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2022;226(2):SS1071–SS1097.2. doi: 10.1016/j.ajog.2020.07.020
  • Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–622. doi: 10.1056/NEJMoa1704559
  • Fishel Bartal M, Sibai BM. Eclampsia in the 21st century. Am J Obstet Gynecol. 2022;226(2):S1237–S1253. doi: 10.1016/j.ajog.2020.09.037
  • LA M, von Dadelszen P, Singer J. The CHIPS randomized controlled trial (control of hypertension in pregnancy study) is severe hypertension just an elevated blood pressure? Hypertens. 2016;68(5):1153–1159. doi: 10.1161/HYPERTENSIONAHA.116.07862
  • Chappell LC, Brocklehurst P, Green ME, et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet. 2019;394(10204):1181–1190. doi: 10.1016/S0140-6736(19)31963-4
  • Sun F, Han B, Chen Y, et al. Development and external validation of a model for predicting adverse outcomes in women with preeclampsia: a retrospective study from two trans-regional centers in China. Pregnancy Hypertens. 2021;26:133–140. doi: 10.1016/j.preghy.2021.10.008
  • Saleh L, Alblas MM, Nieboer D, et al. Prediction of pre-eclampsia-related complications in women with suspected or confirmed pre-eclampsia: development and internal validation of clinical prediction model. Ultrasound In Obstet & Gyne. 2021;58(5):698–704. doi: 10.1002/uog.23142
  • Ngwenya S, Jones B, Mwembe D, et al. Development and validation of risk prediction models for adverse maternal and neonatal outcomes in severe preeclampsia in a low-resource setting, Mpilo central hospital, Bulawayo, Zimbabwe. Pregnancy Hypertens. 2021;23:18–26. doi: 10.1016/j.preghy.2020.10.011
  • Dröge LA, Perschel FH, Stütz N, et al. Prediction of preeclampsia-related adverse outcomes with the sFlt-1 (soluble fms-like tyrosine kinase 1)/PlGF (placental growth factor)-ratio in the clinical routine: a real-world study. Hypertens. 2021;77(2):461–471. doi: 10.1161/HYPERTENSIONAHA.120.15146
  • Rana S, Powe CE, Salahuddin S, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulat. 2012;125(7):911–9. doi: 10.1161/CIRCULATIONAHA.111.054361
  • Tan J, Yang M, Liao Y, et al. Development and validation of a prediction model on severe maternal outcomes among pregnant women with pre-eclampsia: a 10-year cohort study. Sci Rep. 2020;10(1):15590. doi: 10.1038/s41598-020-72527-0
  • Schmidt LJ, Rieger O, Neznansky M, et al. A machine-learning–based algorithm improves prediction of preeclampsia-associated adverse outcomes. Am J Obstet Gynecol. 2022;227(1):.e77.1–.e77.30. doi: 10.1016/j.ajog.2022.01.026
  • Handelman GS, Kok HK, Chandra RV, et al. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–619. doi: 10.1111/joim.12822
  • Ramakrishnan R, Rao S, He JR. Perinatal health predictors using artificial intelligence: a review. Womens Health. 2021;17:17455065211046132. doi: 10.1177/17455065211046132
  • Manoochehri Z, Manoochehri S, Soltani F, et al. Predicting preeclampsia and related risk factors using data mining approaches: a cross-sectional study. Int J Reprod BioMed. 2021;19(11):959–968. doi: 10.18502/ijrm.v19i11.9911
  • Li YX, Shen XP, Yang C, et al. Novelelectronic health records applied for prediction of pre-eclampsia: machine-learning algorithms. Pregnancy Hypertens. 2021;26:102–109. doi: 10.1016/j.preghy.2021.10.006
  • Sufriyana H, Wu YW, Su EC. Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort. JMIR Med Inform. 2020;8(5):e15411. doi: 10.2196/15411
  • Sufriyana H, Wu YW, Su EC. Artificial intelligence-assisted prediction of preeclampsia: development and external validation of a nationwide health insurance dataset of the BPJS kesehatan in Indonesia. EBioMedicine. 2020;54:102710. doi: 10.1016/j.ebiom.2020.102710
  • Marić I, Tsur A, Aghaeepour N, et al. Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol MFM. 2020;2(2):100100. doi: 10.1016/j.ajogmf.2020.100100
  • Sandström A, Snowden JM, Höijer J, et al. Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: a population based cohort study. PloS One. 2019;14(11):e0225716. doi: 10.1371/journal.pone.0225716
  • Jhee JH, Lee S, Park Y, et al. Prediction model development of late-onset preeclampsia using machine learning-based methods. PloS One. 2019;14(8):e0221202. doi: 10.1371/journal.pone.0221202
  • Brown MA, Magee LA, Kenny LC, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310. doi: 10.1016/j.preghy.2018.05.004
  • Tranquilli AL, Brown MA, Zeeman GG, et al. The definition of severe and early-onset preeclampsia. Statements from the international society for the study of hypertension in pregnancy (ISSHP). Pregnancy Hypertens. 2013;3(1):44–47. doi: 10.1016/j.preghy.2012.11.001
  • Lundberg SM, Lee SI. A unified approach to interpreting model predictions. Proceedings of the 31st international conference on neural information processing systems; Long Beach, California, USA: Curran Associates Inc.; 2017. p. 4768–4777.
  • Akiba T, Sano S, Yanase T, et al. Optuna: a next-generation hyperparameter optimization framework. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA: Association for Computing Machinery; 2019. p. 2623–2631.
  • James Bergstra RB, Bengio Y, Kégl B. Algorithms for hyper-parameter optimization. Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS’11). Curran Associates Inc: Red Hook, NY, USA; 2011. p. 2546–2554.
  • Chen T, Guestrin C. Xgboost: a scalable tree boosting system. 2016. doi: 10.1145/2939672.2939785.
  • Lind T, GODFREY KA, OTUN H, et al. Changes in serum uric acid concentrations during normal pregnancy. Br J Obstet Gynaecol. 1984;91(2):128–132. doi: 10.1111/j.1471-0528.1984.tb05895.x
  • Dacaj R, Izetbegovic S, Stojkanovic G, et al. Elevated liver enzymes in cases of preeclampsia and intrauterine growth restriction. Med Arch. 2016;70(1):44–47. doi: 10.5455/medarh.2016.70.44-47
  • Liao Y, Liu XH, Tan J, et al. Development of a predictive model for adverse outcomes of preeclampsia. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018;49(5):797–802.
  • Lv B, Zhang Y, Yuan G, et al. Establishment of a nomogram model for predicting adverse outcomes in advanced-age pregnant women with preterm preeclampsia. Bmc Pregnancy Childbirth. 2022;22(1):221. doi: 10.1186/s12884-022-04537-x
  • Bainbridge SA, Roberts JM, von Versen-Höynck F, et al. Uric acid attenuates trophoblast invasion and integration into endothelial cell monolayers. Am J Physiol Cell Physiol. 2009;297(2):C440–50. doi: 10.1152/ajpcell.00593.2008
  • Le TM, Nguyen LH, Phan NL, et al. Maternal serum uric acid concentration and pregnancy outcomes in women with pre-eclampsia/eclampsia. Int J Gynaecol Obstet. 2019;144(1):21–26. doi: 10.1002/ijgo.12697
  • Livingston JR, Payne B, Brown M, et al. Uric acid as a predictor of adverse maternal and perinatal outcomes in women hospitalized with preeclampsia. J Obstet Gynaecol Can. 2014;36(10):870–877. doi: 10.1016/S1701-2163(15)30435-7
  • Bodnar LM, Catov JM, Klebanoff MA, et al. Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiol. 2007;18(2):234–9. doi: 10.1097/01.ede.0000254119.99660.e7
  • Sohlberg S, Stephansson O, Cnattingius S, et al. Maternal body mass index, height, and risks of preeclampsia. Am J Hypertens. 2012;25(1):120–125. doi: 10.1038/ajh.2011.175
  • Bodnar LM, Ness RB, Harger GF, et al. Inflammation and triglycerides partially mediate the effect of prepregnancy body mass index on the risk of preeclampsia. Am J Epidemiol. 2005;162(12):1198–1206. doi: 10.1093/aje/kwi334
  • Duhig K, Seed PT, Placzek A, et al. A prognostic model to guide decision-making on timing of delivery in late preterm pre-eclampsia: the PEACOCK prospective cohort study. Health Technol Assess. 2021;25(30):1–32. doi: 10.3310/hta25300
  • Duhig KE, Seed PT, Placzek A, et al. Prognostic indicators of severe disease in late preterm pre-eclampsia to guide decision making on timing of delivery: The PEACOCK study. Pregnancy Hypertens. 2021;24:90–95. doi: 10.1016/j.preghy.2021.02.012
  • von Dadelszen P, Payne B, Li J, et al. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet. 2011;377(9761):219–27. doi: 10.1016/S0140-6736(10)61351-7
  • Guida JP, Cralcev C, Costa Santos J, et al. Validation of the fullPIERS model for prediction of adverse outcomes in preeclampsia at a referral center. Pregnancy Hypertens. 2021;23:112–115. doi: 10.1016/j.preghy.2020.11.013
  • Ukah UV, Payne B, Hutcheon JA, et al. Assessment of the fullPIERS risk prediction Model in women with early-onset preeclampsia. Hypertension. 2018;71(4):659–665. doi: 10.1161/HYPERTENSIONAHA.117.10318
  • Robbins T, Shennan A, Sandall J. Modified early obstetric warning scores: a promising tool but more evidence and standardization is required. Acta Obstet Gynecol Scand. 2019;98(1):7–10. doi: 10.1111/aogs.13448
  • Edvinsson C, Hansson E, Nielsen N, et al. Intensive care patients with preeclampsia – clinical risk factors and biomarkers for oxidative stress and angiogenic imbalance as discriminators for severe disease. Pregnancy Hypertens. 2022;30:88–94. doi: 10.1016/j.preghy.2022.08.005