370
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Transcranial magnetic stimulation as an antioxidant

, , , , &
Pages 381-389 | Received 29 Nov 2017, Accepted 26 Jan 2018, Published online: 02 Mar 2018

References

  • Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107.
  • Medina-Fernandez FJ, Escribano BM, Feijóo M, et al. Transcranial magnetic stimulation as a promising tailored medicine for neurological disorders: beyond chemical drugs. MOJ Cell Sci Rep. 2016;3(4):00062.
  • Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–199.
  • Medina FJ, Tunez I. Huntington’s disease: the value of transcranial meganetic stimulation. Curr Med Chem. 2010;17(23):2482–2491.
  • Yamaguchi-Sekino S, Sekino M, Ueno S. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields. Magn Reson Med Sci. 2011;10(1):1–10.
  • Medina FJ, Tunez I. Mechanisms and pathways underlying the therapeutic effect of transcranial magnetic stimulation. Rev Neurosci. 2013;24(5):507–525.
  • Post A, Muller MB, Engelmann M, et al. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci. 1999;11(9):3247–3254.
  • Ihara Y, Takata H, Tanabe Y, et al. Influence of repetitive transcranial magnetic stimulation on disease severity and oxdiative stress markers in the cerebrospinal fluid of patients with spinocerebellar degeneration. Neurol Res. 2005;27(3):310–313.
  • Yang X, Song L, Liu Z. The effect of repetitive transcranial magnetic stimulation on a model rat of Parkinson’s disease. Neuroreport. 2010;21(4):268–272.
  • Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int. 2013;2013:484613.
  • Pena-Philippides JC, Yang Y, Bragina O, et al. Effect of pulsed electromagnetic field (PEMF) on infarct size and inflammation after cerebral ischemia in mice. Transl Stroke Res. 2014;5(4):491–500.
  • De Mattei M, Varani K, Masieri FF, et al. Adenosine analogs and electromagnetic fields inhibit prostaglandin E2 release in bovine synovial fibroblasts. Osteoarthritis Cartilage. 2009;17(2):252–262.
  • Patruno A, Amerio P, Pesce M, et al. Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br J Dermatol. 2010;162(2):258–266.
  • Ongaro A, Varani K, Masieri FF, et al. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J Cell Physiol. 2012;227(6):2461–2469.
  • Vincenzi F, Targa M, Corciulo C, et al. Pulsed electromagnetic fields increased the anti-inflammatory effect of A(2)A and A(3) adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One. 2013;8(5):e65561.
  • Sasso V, Bisicchia E, Latini L, et al. Repetitive transcranial magnetic stimulation reduces remote apoptotic cell death and inflammation after focal brain injury. J Neuroinflammation. 2016;13(1):150.
  • Okada K, Matsunaga K, Yuhi T, et al. The long-term high-frequency repetitive transcranial magnetic stimulation does not induce mRNA expression of inflammatory mediator in the rat central nervous system. Bin Res. 2002;957(1):37–41.
  • Medina-Fernandez FJ, Luque E, Aguilar-Luque M, et al. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in experimental autoimmune encephalomyelitis. Life Sci. 2017;169:20–26.
  • Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426.
  • Tasset I, Perez-Herrera A, Medina FJ, et al. Extremely low-frequency electromagnetic fields activate the antioxidant pathway Nrf2 in a Huntington’s disease-like rat model. Brain Stimul. 2013;6(1):84–86.
  • Tunez I, Montilla P, Munoz MC, et al. Effect of transcranial magnetic stimulation on oxidative stress induced by 3-nitropropionic acid in cortical synaptosomes. Neurosci Res. 2006;56(1):91–95.
  • Tunez I, Drucker-Colin R, Jimena I, et al. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington’s disease. J Neurochem. 2006;97(3):619–630.
  • Tasset I, Medina FJ, Jimena I, et al. Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington’s disease rat model: effects on neurotrophic factors and neuronal density. Neuroscience. 2012;209:54–63.
  • Tasset I, Drucker-Colin R, Pena J, et al. Antioxidant-like effects and protective action of transcranial magnetic stimulation in depression caused by olfactory bulbectomy. Neurochem Res. 2010;35(8):1182–1187.
  • Raus-Balind S, Selakovic V, Radenovic L, et al. Extremely low frequency magnetic field (50 Hz, 0.5 mT) reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One. 2014;9(2):e88921.
  • Kurzeja E, Synowiec-Wojtarowicz A, Stec M, et al. Effect of a static magnetic fields and fluoride ions on the antioxidant defense system of mice fibroblasts. Int J Mol Sci. 2013;14(7):15017–15028.
  • Pawlowska-Góral K, Kimsa-Dedek M, Synowiec-Wojtarowicz A, et al. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts. Environ Sci Pollut Res Int. 2016;23(15):14989–14996.
  • Kavaliers M, Prato FS. Light-dependent effects of magnetic fields on nitric oxide activation in the land snail. Neuroreport. 1999;10(9):1863–1867.
  • Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 2002;7(1):18–23.
  • Medeiros LF, Caumo W, Dussán-Sarria J, et al. Effect of deep intramuscular stimulation and transcranial magnetic stimulation on neurophysiological biomarkers in chronic myofascial pain syndrome. Pain Med. 2016;17(1):122–135.
  • Medina-Fernandez FJ, Escribano BM, Aguera E, et al. Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic Res. 2017:1–10.
  • Park WH, Soh KS, Lee BC, et al. 4 Hz magnetic field decreases oxidative stress in mouse brain: a chemiluminescence study. Electromagn Biol Med. 2008;27(2):165–172.
  • Jimena I, Tasset I, Lopez-Martos R, et al. Effects of magnetic stimulation on oxidative stress and skeletal muscle regeneration induced by mepivacaine in rat. Med Chem. 2009;5(1):44–49.
  • Vignola MB, Davila S, Cremonezzi D, et al. Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of magnetic therapy on experimental myopathy in rats. Electromagn Biol Med. 2012;31(4):320–332.
  • Raggi F, Vallesi G, Rufini S, et al. ELF magnetic therapy and oxidative balance. Electromagn Biol Med. 2008;27(4):325–339.
  • Ihara Y, Kibata M, Hayabara T, et al. Free radicals in the cerebrospinal fluid are associated with neurological disorders including mitochondrial encephalomyopathy. Biochem Mol Biol Int. 1997;42(5):937–947.
  • Tripathi GM, Kalita J, Misra UK. A study of oxidative stress in migraine with special reference to prophylactic therapy. Int J Neurosci. 2017;16:1–7.
  • Moliadze V, Zhao Y, Eysel U, et al. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J Physiol. 2003;553(Pt2):665–679.
  • Cirillo G, Di Pino G, Capone F, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18.
  • Rajan TS, Ghilardi MFM, Wang HY, et al. Mechanism of action for rTMS: a working hypothesis based on animal studies. Front Physiol. 2017;8:457.
  • Kirkcaldie MTK, Pridmore SA, Pascual-Leone A. Transcranial magnetic stimulation as therapy for depression and other disorders. Aust NZJ Psychiatry. 1997;31:264–272.
  • Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the internation workshop on the safety and repetitive transcranial stimulation. Electroencephalogr Clin Neurophysiol. 1996;108:1–16.
  • Fujiki M, Steward O. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS. Brain Res Mol Brain Res. 1997;44:301–308.
  • Gao F, Wang S, Guo Y, et al. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study. Eur J Nucl Med Mol Imaging. 2010;37:954–961.
  • Arias-Carrión O, Verdugo-Díaz L, Feria-Velasco A, et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigro-striatal lesions. J Neurosci Res. 2004;78:16–28.
  • Arias-Carrión O. Basic mechanisms of rTMS: implications in Parkinson’s disease. Int Arch Med. 2008;1(1):2.
  • Podda MV, Leone L, Barbati SA, et al. Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. Eur J Neurosci. 2014;39:893–903.
  • Feria-Velasco L, Castillo-Medina S, Verdugo-Díaz L, et al. Neuronal differentiation of chromaffin cells in vitro, induced by extremely low frequency magnetic fields or nerve growth factor: a histological and ultra-structural comparative study. J Neurosci Res. 1998;53:569–582.
  • Verdugo-Díaz L, Palomero M, Drucker-Colín R. Differentiation of chromaffin cells by extremely low frequency magnetic fields changes ratios of catecholamine type messenger. Bioelectrochem Bioenerg. 1998;46:297–300.
  • Vlachos A, Müller-Dahlhaus F, Rosskopp J, et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mose organotypic hippocampal slice cultures. J Neurosci. 2012;32:17514–17523.
  • Ji RR, Schlaepfer TE, Aizenman CD, et al. Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proc Natl Acad Sci USA. 1998;95:15635–15640.
  • Ciejka E, Kleniewska P, Skibska B, et al. Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J Physiol Pharmacol. 2011;62(6):657–661.
  • Selakovic V, Raus Balind S, Radenovic L, et al. Age-dependent effects of ELF-MF on oxidative stress in the brain of Mongolian gerbils. Cell Biochem Biophys. 2013;66(3):513–521.
  • Park WH, Chae YJ, Soh KS, et al. Inhibition of pentylenetetrazole-induced seizure in mice by using a 4 Hz magnetic field: a comparative study with a 60 Hz magnetic field. Electromagn Biol Med. 2012;31(4):293–298.
  • De Nicola M, Cordisco S, Cerella C, et al. Magnetic fields protect from apoptosis via redox alteration. Ann N Y Acad Sci. 2006;1090:59–68.
  • Di Loreto S, Falone S, Caracciolo V, et al. Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol. 2009;219(2):334–343.
  • Martinez-Samano J, Torres-Duran PV, Juarez-Oropeza MA, et al. Effects of acute electromagnetic field exposure and movement restraint on antioxidant system in liver, heart, kidney and plasma of Wistar rats: a preliminary report. Int J Radiat Biol. 2010;86(12):1088–1094.
  • Nakayama M, Nakamura A, Hondou T, et al. Evaluation of cell viability, DNA single-strand breaks, and nitric oxide production in LPS-stimulated macrophage RAW264 exposed to a 50-Hz magnetic field. Int J Radiat Biol. 2016;92(10):583–589.
  • Cho SI, Nam YS, Chu LY, et al. Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics. 2012;33(7):568–574.
  • Chervyakov AV, Chernyavsky AY, Sinitsyn DO, et al. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 2015;9:303.
  • Pelletier SJ, Lagacé M, St-Amour I, et al. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation. Int J Nueropsychopharmacol. 2014;18(5):pii:pyu090.
  • Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol. 2014;18(2):pii:pyu047.
  • Zhang Y, Song W. Transcranial direct current stimulation in disorders of consciousness: a review. Int J Neurosci. 2018;128(3):255–261.
  • Jackson MP, Rahman A, Lafon B, et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin Neurophysiol. 2016;127(11):3425–3454.
  • Lu C, Wei Y, Hu R, et al. Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Neuromodulation. 2015;18(6):442–446.
  • Hong CZ, Harmon D, Yu J. Static magnetic field influence on rat tail nerve function. Arch Phys Med Rehabil. 1986;67(10):746–749.
  • Bambini F, Santarelli A, Putignano A, et al. Use of supercharged cover screw as static magnetic field generator for bone healing, 2nd part: in vivo enhancement of bone regeneration in rabbits. J Biol Regul Homeost Agents. 2017;31(2):481–485.
  • Bambini F, Santarelli A, Putignano A, et al. Use of supercharged cover screw as static magnetic field generator for bone healing, 1st part: in vitro enhancement of osteoblast-like cell differentiation. J Biol Regul Homeost Agents. 2017;31(1):215–220.
  • Oliviero A, Mordillo-Mateos L, Arias P, et al. Transcranial static magnetic field stimulation of the human motor cortex. J Physiol. 2011;589(Pt20):4949–4958.
  • Dileone M, Carrasco-López MC, Segundo-Rodríguez JC, et al. Dopamine-dependent changes of cortical excitability induced by transcranial static magnetic field stimulation in Parkinson’s disease. Sci Rep. 2017;7(1):4329.
  • Lozano-Soto E, Soto-León V, Sabbarese S, et al. Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia. Cephalalgia. 2017;1:333102417736899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.