56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In situ microbial bioremediation of obsolete pesticides at their disposal sites

, &

References

  • Abatenh, E., B. Gizaw, Z. Tsegaye, and M. Wassie. 2017. Application of microorganisms in bioremediation-review. Journal of Environmental Microbiology 1:2–9. doi:10.17352/ojeb.000007.
  • Abraham, J., and S. Silambarasan. 2016. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway. Pesticide Biochemistry and Physiology 126:13–21. doi:10.1016/j.pestbp.2015.07.001.
  • Adams, G., P. Tawari-Fufeyin, S. Okoro, and I. Ehinomen. 2015. Bioremediation, biostimulation and bioaugmentation: A review. International Journal of Environmental Bioremediation & Biodegradation 3 (1):28–39. doi:10.12691/ijebb-3-1-5.
  • Adeyinka, A., E. Muco, and L. Pierre. 2023. Organophosphates. [Updated 2023 Nov 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  • Aktar, M. W., D. Sengupta, and A. Chowdhury. 2009. Impact of pesticide use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology 2 (1):1–12. doi:10.2478/v10102-009-0001-7.
  • Alfonso, L. F., G. V. Germán, P. C. M. del Carmen, and G. Hossein. 2017. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan. Chemosphere 166:292–9. doi:10.1016/j.chemosphere.2016.09.109.
  • Al-Hawash, A. B., M. A. Dragh, S. Li, A. Alhujaily, H. A. Abbood, X. Zhang, and F. Ma. 2018. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egyptian Journal of Aquatic Research 44 (2):71–6. doi:10.1016/j.ejar.2018.06.00.
  • Ayilara, M. S., B. S. Adeleke, M. T. Adebajo, S. A. Akinola, C. A. Fayose, U. T. Adeyemi, L. A. Gbadegesin, R. K. Omole, R. M. Johnson, M. Edhemuino, et al. 2023. Remediation by enhanced natural attenuation; an environment-friendly remediation approach. Frontiers in Environmental Science 11:1182586. doi:10.3389/fenvs.1182586.
  • Baldwin, B. R., A. D. Peacock, M. Park, D. M. Ogles, J. D. Istok, J. P. McKinley, C. T. Resch, and D. C. White. 2008. Multilevel samplers as microcosm to assess microbial response to biostimulation. Ground Water 46 (2):295–304. doi:10.1111/j.1745-6584.2007.00411.x.
  • Bhandari, S., D. K. Poudel, R. Marahatha, S. Dawadi, K. Khadayat, S. Phuyal, S. Shrestha, S. Gaire, K. Basnet, U. Khadka, et al. 2021. Microbial enzymes used in bioremediation. Journal of Chemistry 2021:1–17. doi:10.1155/2021/8849512.
  • Briceño, G., H. Schalchli, O. Rubilar, G. R. Tortella, A. Mutis, C. S. Benimeli, G. Palma, and M. C. Diez. 2016. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere 156:195–203. doi:10.1016/j.chemosphere.2016.04.118.
  • Chawla, N., S. Sunita, K. Kamlesh, and R. Kumar. 2013. Bioremediation: An emerging technology for remediation of pesticides. Research Journal of Chemistry and Environment 17 (4):88–105.
  • Chikere, C. B.,C. C. Azubuike, andE. M. Fubara. 2017. Shift in microbial group during remediation by enhanced natural attenuation (RENA) of a crude oil-impacted soil: a case study of Ikarama Community, Bayelsa, Nigeria. Biotech 7:152. doi:10.1007/s13205-017-0782-x.
  • Chikere, C. B., M. Tekere, and R. Adeleke. 2019. Enhanced microbial hydrocarbon biodegradation as stimulated during field-scale landfarming of crude oil-impacted soil. Sustainable Chemistry and Pharmacy 14:100177. doi:10.1016/j.scp.2019.100177.
  • Deng, S., Y. Chen, D. Wang, T. Shi, X. Wu, X. Ma, X. Li, R. Hua, X. Tang, and Q. X. Li. 2015. Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Journal of Hazardous Materials 297 (297):17–24. doi:10.1016/j.jhazmat.2015.04.052.
  • Department of Toxic Substances Control California Environmental Protection Agency. 2010. Proven technologies and remedies guidance remediation of chlorinated volatile organic compounds in soil. Sacramento, CA: California Environmental Protection.
  • Doolotkeldieva, T., M. Konurbaeva, and S. Bobusheva. 2018. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research International 25 (32):31848–62. doi:10.1007/s11356-017-0048-5.
  • Doolotkeldieva, T., S. Bobusheva, and M. Konurbaeva. 2021. The improving conditions for the aerobic bacteria performing the degradation of obsolete pesticides in polluted soils. Air, Soil and Water Research 14:117862212098259. doi:10.1177/1178622120982590.
  • Egbe, C. C., G. O. Oyetibo, and M. O. Ilori. 2021. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicology and Environmental Safety 207:111319. doi:10.1016/j.ecoenv.2020.111319.
  • Erguven, G. Ö., O. Serdar, M. Tanyol, N. C. Yildirim, and B. Durmus. 2022. The bioremediation capacity of Sphingomonas melonis for methomyl-contaminated soil media: RSM optimization and biochemical assessment by Dreissena polymorpha. Chemistry Select 7: e202202105. doi:10.1002/slct.202202105.
  • Fang, H., Y. Deng, Q. Ge, J. Mei, H. Zhang, H. Wang, and Y. Yu. 2018. Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. Ecotoxicology and Environmental Safety 158:145–53. doi:10.1016/j.ecoenv.2018.04.026.
  • Fu, P., and F. Secundo. 2016. Algae and their bacterial consortia for soil bioremediation. Chemical Engineering Transactions 49:427–32.
  • Gangola, S., A. Sharma, P. Bhatt, P. Khati, and P. Chaudhary. 2018. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific Reports 8 (1):12755. doi:10.1038/s41598-018-31082-5.
  • He, T. T., A. J. Zuo, J. G. Wang, and P. Zhao. 2017. Organochlorine pesticides accumulation and breast cancer: A hospital-based case-control study. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 39 (5):1010428317699114. doi:10.4103/sajc.sajc_427_18.
  • Ishag, A. E. S., A. O. Abdelbagi, A. M. Hammad, E. A. Elsheikh, O. E. Elsaid, J. H. Hur, and M. D. Laing. 2016. Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. Journal of Agricultural and Food Chemistry 64 (45):8491–8. 84918498. doi:10.1021/acs.jafc.6b03334.
  • Jariyal, M., V. Jindal, K. Mandal, V. K. Gupta, and B. Singh. 2018. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicology and Environmental Safety 159:310–6. doi:10.1016/j.ecoenv.2018.04.063.
  • Jayaraj, R., P. Megha, and P. Sreedev. 2016. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology 9 (3–4):90–100. doi:10.1515/intox-2016-0012.
  • John, E. M., J. Sreekumar, and M. S. Jisha. 2016. Optimization of chlorpyrifos degradation by assembled bacterial consortium using response surface methodology. Soil and Sediment Contamination. Soil and Sediment Contamination: An International Journal 25 (6):668–82. doi:10.1080/15320383.2016.1190684.
  • Kafilzadeh, F., M. Ebrahimnezhad, and Y. Tahery. 2015. Isolation and identification of endosulfan-degrading bacteria and evaluation of their bioremediation in Kor River, Iran. Osong Public Health and Research Perspectives 6 (1):39–46. doi:10.1016/j.phrp.2014.12.003.
  • Kaminsky, L. M., R. V. Trexler, R. J. Malik, K. L. Hockett, and T. H. Bell. 2019. The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology 37 (2):140–51. doi:10.1016/j.tibtech.2018.11.011.
  • Kebede, G., T. Tafese, E. M. Abda, M. Kamaraj, and F. Assefa. 2021. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. Journal of Chemistry 2021:1–17. doi:10.1155/2021/9823362.
  • Kolankaya, D. 2008. Organochlorine pesticide reidues and their toxic effects on the environment and organisms in Turkey. International Journal of Environmental Analytical Chemistry 86 (1–2):147–60. doi:10.1080/03067310500247918.
  • Konda, L. N., I. Czinkota, G. Füleky, and G. Morovján. 2002. Modeling of single-step and multistep adsorption isotherms of organic pesticides on soil. Journal of Agricultural and Food Chemistry 50 (25):7326–31. doi:10.1021/jf0204506.
  • Korkmaz, V., N. Yildirim, G. O. Erguven, B. Durmus, and Y. Nuhoglu. 2021. The bioremediation of glyphosate in soil media by some newly isolated bacteria: The COD, TOC removal efficiency and mortality assessment for Daphnia magna. Environmental Technology & Innovation 22:101535. doi:10.1016/j.eti.2021.101535.
  • Książek-Trela, P., and E. Szpyrka. 2022. The effect of natural and biological pesticides on the degradation of synthetic pesticides. Plant Protection Science 58 (4):273–91. doi:10.17221/152/2021-PPS.
  • Kumari, S., Kumar, D., and P. S. M. Khurana. 2022. Microbial degradation of pesticides: Microbial potential for degradation of pesticides. In Development in wastewater treatment research and processes, 41–67. Amsterdam: Elsevier. doi:10.3390/molecules23092313.
  • Li, Y., M. M. Chi, and X. Ge, Beijing Key Laboratory of Biomass Waste Resource Utilization, Biochemical Engineering College, Beijing Union University, Beijing 100023, China. 2019. Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food. International Journal of Agricultural and Biological Engineering 12 (2):218–24. doi:10.25165/j.ijabe.20191202.4190.
  • Liste, H. H., and M. Alexander. 2000. Accumulation of phenanthrene and pyrene in rhizo-sphere soil. Chemosphere 40 (1):11–4. doi:10.1016/s0045-6535(99)00217-9.
  • Luo, X., D. Zhang, X. Zhou, J. Du, S. Zhang, and Y. Liu. 2018. Cloning and characterization of a pyrethroid pesticide decomposing esterase gene, Est3385, from Rhodopseudomonas palustris PSB-S. Scientific Reports 8 (1):7384. doi:10.1038/s41598-018-25734-9.
  • Marei, G. I. K., Y. M. Mohammed, E. I. Rabea, and M. E. Badawy. 2019. Isolation, characterization and efficacy of the bacterial strainLysinibacillus sphaericus YMM in biodegradation of malathion insecticide in liquid media. International Journal of Environmental Studies 76 (4):616–33. doi:10.1080/00207233.2018.1522922.
  • Matthews, G. A. 2018. A history of pesticides. Boston, MA: CABI. ISBN 9781786394873
  • Meng, D., L. Zhang, J. Meng, Q. Tian, L. Zhai, Z. Hao, Z. Guan, Y. Cai, and X. Liao. 2019. Evaluation of the strain Bacillus amyloliquefaciens YP6 in phoxim degradation via transcriptomic data and product analysis. Molecules (Basel, Switzerland) 24 (21):3997. doi: 3390/24213997 doi:10.3390/molecules24213997.
  • Mirsal, I. A. 2008. Soil pollution origin, monitoring & remediation. 2nd ed. Berlin/Heidelberg: Springer-Verlag. ISBN 9783540707752.
  • Narayanan, M., S. Kumarasamy, M. Ranganathan, S. Kandasamy, G. Kandasamy, and K. Gnanavel. 2020. Enzyme and metabolites attained in degradation of chemical pesticides β Cypermethrin by Bacillus cereus. Materials Today: Proceedings 33:3640–5. doi:10.1016/j.matpr.2020.05.722.
  • Netherlands Standardization Institute (NEN) 6980:2008+C1:2010/C2: 2011 n. 2011. Soil quality - Quantitative determination of the content of organochlorine insecticides, chlorobenzenes and polychlorine biphenyls by using gas chromatography. Registration date 2011-08-11. ICS code 13.030.10 Solid Wastes * 13.080.10 Chemical Characteristics Of Soils.
  • Oghoje, S., J. Ukpebor, and E. Ukpebor. 2021. The effects of chicken manure digestates on the removal of diesel range organics from petroleum products polluted soils. Bulgarian Journal of Soil Science 6:78–95. doi:10.5281/zenodo.488777.
  • Okoye, A., C. Chikere, and G. Okpokwasili. 2019. Fungal population dynamics associated with active-phase of hydrocarbon degradation in oil-polluted soil. Journal of Advances in Microbiology 19:1–12. doi:10.9734/jamb/2019/v19i230190.
  • Pérez-Lucas, G., N. Vela, A. El Aatik, and S. Navarro. 2020. Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In Pesticides use and misuse and their impact in the environment, eds. M. Larramendy, and S. Soloneski, 1–15. London, UK: Intech Open. doi:10.5772/intechopen.82418.
  • Raffa, C. M., and F. Chiampo. 2021. Bioremediation of agricultural soils polluted with pesticides: A review. Bioengineering 8 (7):92. 8070092 doi:10.3390/bioengineering.
  • Rahman, Z., L. Thomas, and V. P. Singh. 2019. Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. Journal of Basic Microbiology 59 (5):477–86. doi:10.1002/jobm.201900024.
  • Regulation (EC) n. 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. 2021. Accessed April 8, 2021. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107.
  • Riser-Roberts, E. 2020. Remediation of petroleum contaminated soils: Biological, physical, and chemical processes. Boca Raton, FL: CRC Press.
  • Salazar-Flores, J., F. P. Pacheco-Moisés, G. G. Ortiz, J. H. Torres-Jasso, O. Romero-Rentería, A. L. Briones-Torres, and E. D. Torres-Sánchez. 2020. Occupational exposure to organophosphorus and carbamates in farmers in La Cienega, Jalisco, Mexico: Oxidative stress and membrane fluidity markers. Journal of Occupational Medicine and Toxicology 15 (1):1–11. doi:10.1186/s12995-020-00283-y.
  • Sarma, H., S. Sonowal, and M. Prasad. 2019. Plant-microbiome assisted and biocharamended remediation of heavy metals and polyaromatic compounds─ a microcosmic study. Ecotoxicology and Environmental Safety 176:288–99. doi:10.1016/j.ecoenv.2019.03.081.
  • Schröder, C., C. Burkhardt, and G. Antranikian. 2020. What we learn from extremophiles. ChemTexts 6 (1):8–6. doi:10.1007/s40828-020-0103-6.
  • Sharma, B., A. K. Dangi, and P. Shukla. 2018. Contemporary enzyme-based technologies for bioremediation: A review. Journal of Environmental Management 210:10–22. doi:10. 1016/j.jenvman.2017.12.075
  • Shekhar, S., A. Sundaramanickam, and T. Balasubramanian. 2015. Biomicrobes and their potential applications: A review. Critical Reviews in Environmental Science and Technology 45 (14):1522–54. 2014.955631 doi:10.1080/10643389.
  • Siampiringue, M., R. Chahboune, P. Wong-Wah-Chung, and M. Sarakha. 2019. Carbaryl photochemical degradation on soil model surfaces. Soil Systems 3 (1):17. doi:10.3390/soilsystems3010017.
  • Singh, B., J. Kaur, and K. Singh. 2012. Transformation of malathion by Lysinibacillus sp. isolated from soil. Biotechnology Letters 34 (5):863–7. doi:10.4236/aer.2022.102003.
  • Stockholm Convention. 2021. (Accessed April 8, 2021. https://www.unido.org/our-focus-safeguarding-environment-implementation-multilateral-environmental-agreements/stockholm-convention
  • Szpyrka, E., M. Podbielska, A. Zwolak, B. Piechowicz, G. Siebielec, and M. Słowik-Borowiec. 2020. Influence of a commercial biological fungicide containing Trichoderma harzianum Rifai T-22 on dissipation kinetics and degradation of five herbicides in two types of soil. Molecules (Basel, Switzerland)25 (6):1391. doi:10.3390/molecules25061391.
  • Tyagi, M., M. M. da Fonseca, and C. C. de Carvalho. 2011. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22 (2):231–41. doi:10.1007/s10532-010-9394-4.
  • Vyas, C., and A. A. Waoo. 2020. Prognostication of bioremediation requisite around industrially contaminated environment—a review. Current Biotechnology 9 (1):3–14. 550109666200305092457 doi:10.2174/2211.
  • Yang, L., R. Weber, and G. Liu. 2022. Science and policy of legacy and emerging POPs towards Implementing International Treaties. Emerging Contaminants 8:299–303. doi:10.1016/j.emcon.2022.06.002.
  • Yu, Y. L., X. M. Wu, S. N. Li, H. Fang, H. Y. Zhan, and J. Q. Yu. 2006. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm. Environmental Pollution (Barking, Essex: 1987) 141 (3):428–33. doi:10.1016/j.envpol.2005.08.058.
  • Zhao, H.-M., R.-W. Hu, H.-B. Huang, H.-F. Wen, H. Du, Y.-W. Li, H. Li, Q.-Y. Cai, C.-H. Mo, J.-S. Liu, et al. 2017. Enhanced dissipation of DEHP in soil and simultaneously reduced bioaccumulation of DEHP in vegetable using bioaugmentation with exogenous bacteria. Biology and Fertility of Soils 53 (6):663–75. doi:10.1007/s00374-017-1208-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.