202
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Difference in responsiveness of expressions of starch synthesis-related genes to CRCT among rice cultivars

, , , ORCID Icon, , & show all
Received 13 Nov 2023, Accepted 29 Mar 2024, Published online: 29 Apr 2024

References

  • Cock, J. H., & Yoshida, S. (1972). Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science, 41(2), 226–234.
  • Fukayama, H., Fukuda, T., Masumoto, C., Taniguchi, Y., Sakai, H., Cheng, W., Hasegawa, T., & Miyao, M. (2009). Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Science, 177(3), 203–210. https://doi.org/10.1016/j.plantsci.2009.05.014
  • Fukayama, H., Miyagawa, F., Shibatani, N., Koudou, A., Sasayama, D., Hatanaka, T., Azuma, T., Yamauchi, Y., Matsuoka, D., & Morita, R. (2021). CO2-responsive CCT protein interacts with 14-3-3 proteins and controls the expression of starch synthesis-related genes. Plant Cell and Environment, 44(8), 2480–2493. https://doi.org/10.1111/pce.14084
  • Gendron, J. M., Pruneda-Paz, J. L., Doherty, C. J., Gross, A. M., Kang, S. E., & Kay, S. A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences of the USA, 109(8), 3167–3172. https://doi.org/10.1073/pnas.1200355109
  • Goda, T., Teramura, H., Suehiro, M., Kanamaru, K., Kawaguchi, H., Ogino, C., Kondo, A., & Yamasaki, M. (2016). Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: Implications for bioethanol production. Bioscience, Biotechnology, & Biochemistry, 80(5), 863–869. https://doi.org/10.1080/09168451.2015.1136882
  • Hirano, T., Saito, Y., Ushimaru, H., & Michiyama, H. (2005). The effect of the amount of nitrogen fertilizer on starch metabolism in leaf sheath of japonica and indica rice varieties during the heading period. Plant Production Science, 8(2), 122–130. https://doi.org/10.1626/pps.8.122
  • Liu, Y. G., Mitsukawa, N., Oosumi, T., & Whittier, R. F. (1995). Efficient isolation and mapping of arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal: For Cell and Molecular Biology, 8(3), 457–463. https://doi.org/10.1046/j.1365-313X.1995.08030457.x
  • Li, Y., & Xu, M. (2017). CCT family genes in cereal crops: A current overview. The Crop Journal, 5(6), 449–458. https://doi.org/10.1016/j.cj.2017.07.001
  • Miyagawa, F., Shibatani, N., Morita, R., Sasayama, D., Hatanaka, T., Azuma, T., & Fukayama, H. (2023). Effects of knockout of CO2-responsive CCT protein, a regulator of starch synthesis on physiological characteristics of rice. Plant Production Science, 26(3), 273–286. https://doi.org/10.1080/1343943X.2023.2233161
  • Morita, R., Sugino, M., Hatanaka, T., Misoo, S., & Fukayama, H. (2015). CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiology, 167(4), 1321–1331. https://doi.org/10.1104/pp.15.00021
  • Nemoto, Y., Nonoue, Y., Yano, M., & Izawa, T. (2016). Hd. 1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. The Plant Journal: For Cell and Molecular Biology, 86(3), 221–233. https://doi.org/10.1111/tpj.13168
  • Okamura, M., Hirose, T., Hashida, Y., Yamagishi, T., Ohsugi, R., & Aoki, N. (2013). Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Functional Plant Biology, 40(11), 1137–1146. https://doi.org/10.1071/FP13105
  • Sugimura, Y., Michiyama, H., & Hirano, T. (2015). Involvement of α-amylase genes in starch degradation in rice leaf sheaths at the post-heading stage. Plant Production Science, 18(3), 277–283. https://doi.org/10.1626/pps.18.277
  • Valverde, F. (2011). CONSTANS and the evolutionary origin of photoperiodic timing of flowering. Journal of Experimental Botany, 62(8), 2453–2463. https://doi.org/10.1093/jxb/erq449