Publication Cover
Redox Report
Communications in Free Radical Research
Volume 29, 2024 - Issue 1
727
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles

, , , , &

References

  • Jin J, Yang L, Chen F, et al. Drug delivery system based on nanobubbles. Interdiscip Mater. 2022;1:471–494. doi: 10.1002/idm2.12050
  • Zullino S, Argenziano M, Stura I, et al. From micro- to nano-multifunctional theranostic platform: effective ultrasound imaging is not just a matter of scale. Mol Imaging. 2018;17:153601211877821. doi: 10.1177/1536012118778216
  • Nitai AS, Mahmud R, Habib A, et al. A systematic review on nanobubbles in drug delivery: mechanism and applications. Biomed J Sci Tech Res. 2022;43(5):35041–35045.
  • Combination of ultrasound and nanobubbles enables the removal of tumors without surgery. News-Medical.net. 2022. [cited 2023 June 6]. Available from: https://www.news-medical.net/news/20221121
  • Liu S, Oshita S, Thuyet DQ, et al. Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro. Langmuir. 2018;34:11878–11885. doi: 10.1021/acs.langmuir.8b02440
  • Sayadi LR, Banyard DA, Ziegler ME, et al. Topical oxygen therapy & micro/nanobubbles: a new modality for tissue oxygen delivery. Int Wound J. 2018;15:363–374. doi: 10.1111/iwj.12873
  • Kida H, Feril LB, Irie Y, et al. Influence of nanobubble size distribution on ultrasound-mediated plasmid DNA and messenger RNA gene delivery. Front Pharmacol. 2022;13:855495. doi: 10.3389/fphar.2022.855495
  • Nittayacharn P, Yuan HX, Hernandez C, et al. Enhancing tumor drug distribution with ultrasound-triggered nanobubbles. J Pharm Sci. 2019;108(9):3091–3098. doi: 10.1016/j.xphs.2019.05.004
  • Batchelor DVB, Armistead FJ, Ingram N, et al. The influence of nanobubble size and stability on ultrasound enhanced drug delivery. Langmuir. 2022;38(45):13943–13954. doi: 10.1021/acs.langmuir.2c02303
  • Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Nat Acad Sci. 2009;106:8665–8670. doi: 10.1073/pnas.0903485106
  • Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87:142–149. doi: 10.1093/ajcn/87.1.142
  • Rana A, Samtiya M, Dhewa T, et al. Health benefits of polyphenols: a concise review. J Food Biochem. 2022;46(10):e14264. doi: 10.1111/jfbc.14264
  • Rajha HN, Paule A, Aragonès G, et al. Recent advances in research on polyphenols: effects on microbiota, metabolism, and health. Mol Nutr Food Res. 2022;66(1):e2100670. doi: 10.1002/mnfr.202100670
  • Spencer JP, Ria-Evans C, William RJ. Modulation of pro-survival Akt/protein kinase B and ERK1/2 signaling cascades by quercetin and its in vivo metabolites underlie their action on neuronal viability. J Bio Chem. 2003;278:34783–34793. doi: 10.1074/jbc.M305063200
  • Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Res Rev. 2013;12:237–252. doi: 10.1016/j.arr.2012.03.008
  • Sharma A, Kaur M, Katnoria J, et al. Polyphenols in food: cancer prevention and apoptosis induction. Curr Med Chem. 2018;25:4740–4757. doi: 10.2174/0929867324666171006144208
  • Munin A, Edwards-Levy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3:793–829. doi: 10.3390/pharmaceutics3040793
  • Fang Z, Bhandri B. Encapsulation of polyphenols – a review. Trends Food Sci Technol. 2010;21:510–523. doi: 10.1016/j.tifs.2010.08.003
  • Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr. 2015;54:325–341. doi: 10.1007/s00394-015-0852-y
  • Parkar SG, Trower TM, Stevenson DE. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe. 2013;23:12–19. doi: 10.1016/j.anaerobe.2013.07.009
  • Svegliati-Baron G, Patricio B, Liuci G, et al. Gut-pancreas-liver axis as a target for treatment of NAFLD/NASH. Int J Mol Sci. 2020;21(16):5820. doi: 10.3390/ijms21165820
  • Albillos A, Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72:558–577. doi: 10.1016/j.jhep.2019.10.003
  • Fung TC. The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol Dis. 2020;136:104714. doi: 10.1016/j.nbd.2019.104714
  • Mayer EA, Nance K, Chen S. The gut-brain-axis. Annu Rev Med. 2022;73:439–453. doi: 10.1146/annurev-med-042320-014032
  • Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018;9:900. doi: 10.3389/fphys.2018.00900
  • Buhman H, Roux CW, Bueter MN. The gut-brain axis in obesity. Best Pract Res Clin Gastroenterol. 2014;28:559–571. doi: 10.1016/j.bpg.2014.07.003
  • Lotstedt B, Strazar M, Xavier RJ, et al. Spatial host-microbiome sequencing. bioRxiv. 2022. doi:10.1038/s41587-023-01988-1
  • Li VSW. Modelling intestinal inflammation and infection using ‘mini-gut’ organoids. Nat Rev Gastroenterol Hepatol. 2021;18:89–90. doi: 10.1038/s41575-020-00391-4
  • Kraljević Pavelić S, Simović Medica J, Gumbarević D, et al. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front Pharmacol. 2018;9:1350. doi: 10.3389/fphar.2018.01350
  • Gescher A. Polyphenolic phytochemicals versus non-steroidal anti-inflammatory drugs: which are better cancer chemopreventive agents? J Chemother. 2004;16:3–6. doi: 10.1179/joc.2004.16.Supplement-1.3
  • Derakhshankhah H, Jafari S, Sarvari S, et al. Biomedical application of zeolitic nanoparticles with an emphasis on medical interventions. Int J Nanomed. 2020;15:363–386. doi: 10.2147/IJN.S234573
  • Sankarasubramanian J, Ahmad R, Avuthu N, et al. Gut microbiota and metabolic specificity in ulcerative colitis and Crohn's disease. Front Med. 2020;7:606298. doi: 10.3389/fmed.2020.606298
  • Lu H, Xiang L, Cui X, et al. Molecular weight dependence of synthetic glycopolymers on flocculation and dewatering of fine particles. Langmuir. 2016;32:11615–11622. doi: 10.1021/acs.langmuir.6b03072
  • Nacini T, Khaleel Basha S, Sadiq AMM, et al. Development and characterization of alginate / chitosan nanoparticulate system for hydrophobic drug encapsulation. J Drug Deliv Sci Technol. 2019;52:65–72. doi: 10.1016/j.jddst.2019.04.002
  • Jakobek L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015;175:556–567. doi: 10.1016/j.foodchem.2014.12.013
  • Kanner J. Polyphenols by generating H2O2, affect cell redox signaling, inhibit PTPs and activate Nrf2 axis for adaptation and cell surviving: in vitro, in vivo and human health. Antioxidants. 2020;9(9):797. doi: 10.3390/antiox9090797
  • Bunesova V, Lacroix C, Schwab C. Mucin cross-feeding of infant bifidobacteria and eubacterium hallii. Microb Ecol. 2018;75:228–238. doi: 10.1007/s00248-017-1037-4
  • Greiner TU, Backhed F. Microbial regulation of GLP-1 and L-cell biology. Mol Metab. 2016;5:753–758. doi: 10.1016/j.molmet.2016.05.012
  • Gerard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol. 2019;10:29. doi: 10.3389/fendo.2019.00029
  • Claus SP. Will gut microbiota help design the next generation of GLP-1-based therapies for type 2 diabetes? Cell Metab. 2017;26:6–7. doi: 10.1016/j.cmet.2017.06.009
  • Jackson DN, Theiss A. Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes. 2020;11:285–304. doi: 10.1080/19490976.2019.1592421
  • Wojciechowska O, Costabile A, Kujawska M. The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. Nanoscale Adv. 2023;5(23):6349–6364. doi: 10.1039/D3NA00696D
  • Cui X, Wang X, Chang X, et al. A new capacity of gut microbiota: fermentation of engineered inorganic carbon nanomaterials into endogenous organic metabolites. Proc Natl Acad Sci U S A. 2023;120(20):e2218739120. doi: 10.1073/pnas.2218739120
  • Ahmed S, Bhattacharya T, Annu A, editors. Handbook of nanotechnology in nutraceuticals. CRC Press; Taylor &Francis; 2023.
  • Cas MD, Ghidoni R. Dietary curcumin: correlation between bioavailability and health potential. Nutrients. 2019;11:2147. doi: 10.3390/nu11092147
  • Huminiecki L. Evidence for multilevel chemopreventive activities of natural phenols from functional genomic studies of curcumin, resveratrol, genistein, quercetin, and luteolin. Int J Mol Sci. 2022;23:14957. doi: 10.3390/ijms232314957
  • Liang J, Yan H, Wang X, et al. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 2017;231:19–24. doi: 10.1016/j.foodchem.2017.02.106
  • Zhang X, Wang C, Qi Z, et al. Pea protein based nanocarriers for lipophilic polyphenols: spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res Int. 2022;160:111713. doi: 10.1016/j.foodres.2022.111713
  • Dong R, Huang Z, Ma W, et al. Fabrication of nanocomplexes for anthocyanins delivery by ovalbumin and differently dense sulphate half-ester polysaccharides nanocarriers: enhanced stability, bio-accessibility, and antioxidant properties. Food Chem. 2024;432:137263. doi: 10.1016/j.foodchem.2023.137263
  • Maqsoudlou A, Assadpour E, Mohebodini H, et al. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Adv Colloid Interface Sci. 2020;278:102122. doi: 10.1016/j.cis.2020.102122
  • Viana-Mendieta P, Sanchez ML, Benavides J. Rational selection of bioactive principles for wound healing applications: growth factors and antioxidants. Int Wound J. 2022;19:100–113. doi: 10.1111/iwj.13602
  • Chen AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:e2900.
  • Shobal G, Joseph T, Majeed M, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Panta Med. 1998;64:353–356. doi: 10.1055/s-2006-957450
  • Wang R, Sun W, Liu J, et al. Preparation of curcumin nanocrystalline injection and evaluation of its in vivo and in vitro properties. J China Pharm Univ. 2022;6:54–59.
  • Valentini G, Parize AL. Investigation of the interaction between curcumin and hydroxypropyl methylcellulose acetate succinate in solid and solution media. J Mol Liq. 2023;376:121446. doi: 10.1016/j.molliq.2023.121446
  • Morimoto T, Sunagawa Y, Katanasaka Y, et al. Drinkable preparation of theracurmin exhibits high absorption efficiency—a single-dose, double-blind, 4-way crossover study. Biol Pharm Bull. 2013;36:1708–1714. doi: 10.1248/bpb.b13-00150
  • Wang F, Yang Y, Ju X, et al. Polyelectrolyte complex nanoparticles from chitosan and acylated rape seed cruciferrin protein for curcumin delivery. J Agric Food Chem. 2018;66:2689–2693.
  • Schibbor C, Kocher A, Benham D, et al. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;58:516–527. doi: 10.1002/mnfr.201300724
  • Peng S, Li Z, Zou L, et al. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: an in vitro and in vivo study. J Agric Food Chem. 2018;66:1488–1497. doi: 10.1021/acs.jafc.7b05478
  • Gota VS, Maru GB, Soni TG, et al. Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem. 2010;58:2095–2099. doi: 10.1021/jf9024807
  • Jude S, Amaraj A, Kunnumakkara AB, et al. Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (Cureit™) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules. 2018;23:2415. doi: 10.3390/molecules23102415
  • Antony B, Merina B, Lyer V, et al. A pilot cross-over study to evaluate human oral bioavailability of BCM-95 CG (BiocurcumaxTM): a novel bioenhanced preparation of curcumin. Indian J Pharm Sci. 2008;70(4):445–449. doi: 10.4103/0250-474X.44591
  • Pasupathy R, Pandian P, Selvamuthukumar S. Nanobubbles: a novel targeted drug delivery system. Braz J Pharm Sci. 2022;58:e19608. doi: 10.1590/s2175-97902022e19604
  • Lu S, Zhao P, Deng Y, et al. Mechanistic insights and therapeutic delivery through micro/nanobubble-assisted ultrasound. Pharmaceutics. 2022;14(3):480. doi: 10.3390/pharmaceutics14030480
  • Wu M, Zhao H, Guo L, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer. Drug Deliv. 2018;25:226–240. doi: 10.1080/10717544.2017.1422300
  • Yan Y, Chen Y, Liu Z, et al. Brain delivery of curcumin through low-intensity ultrasound-induced blood–brain barrier opening via lipid-PLGA nanobubbles. Int J Nanomed. 2021;16:7433–7447. doi: 10.2147/IJN.S327737
  • Abdulmalek S, Nasef M, Awad D, et al. Protective effect of natural antioxidant, curcumin nanoparticles, and zinc oxide nanoparticles against type 2 diabetes-promoted hippocampal neurotoxicity in rats. Pharmaceutics. 2021;13(11):1937. doi: 10.3390/pharmaceutics13111937
  • Zha W, Bai Y, Xu L, et al. Curcumin attenuates testicular injury in rats with streptozotocin-induced diabetes. Biomed Res Int. 2018;2018:7468019.
  • Shengnuo F, Yuqiu Z, Xuan L, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer's disease. Drug Deliv. 2018;25(1):1091–1102. doi: 10.1080/10717544.2018.1461955
  • Othman MS, Hafez MM, Abdel AE. The potential role of zinc oxide nanoparticles in MicroRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biol Trace Elem Res. 2020;197(2):606–618. doi: 10.1007/s12011-019-02012-x
  • Swati CA, Rinku DU, Kishore MP. In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine (Lond). 2016;11(13):1671–1687. doi: 10.2217/nnm-2016-0119
  • Farooqi AA, Pinheiro M, Granja A, et al. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: focus on JAK/STAT, Wnt/β-catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers (Basel). 2020;12:951. doi: 10.3390/cancers12040951
  • Holczer M, Besze B, Zambo V, et al. Epigallocatechin-3-gallate (EGCG) promotes autophagy dependent survival via influencing the balance of mTOR -AMPK pathways upon endoplasmic reticulum stress. Oxid Med Cell Longevity. 2018;2018. Article ID 6721530.
  • Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–199. doi: 10.1016/j.bbrc.2011.02.010
  • Huang CH, Tsai SJ, Wang YJ, et al. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol Nutr Food Res. 2009;53:1156–1165. doi: 10.1002/mnfr.200800592
  • Teng H, Chen L. Polyphenols and bioavailability: an update. Crit Rev Food Sci Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023
  • Liang J, Yan H, Yang HJ, et al. Synthesis and controlled – release properties of chitosan/ β-lactoglobulin nanoparticles as carriers for oral administration of epigallocatchin gallate. Food Sci Biotechnol. 2016;25:1585–1590.
  • Yang R, Tian J, Liu Y, et al. One-step fabrication of phytoferritin-chitosan-epigallocatechin shell-core nanoparticles by thermal treatment. Food Hydrocolloids. 2018;80:24–32. doi: 10.1016/j.foodhyd.2018.01.014
  • Hsieh DS, Lu HC, Chen CC, et al. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system. Int J Nanomed. 2012;7:1623–1633.
  • Hsieh DS, Wang H, Tan S-W, et al. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles. Biomaterials. 2011;32:7633–7640. doi: 10.1016/j.biomaterials.2011.06.073
  • Haghi A, Raussi H, Hashemzadeh H, et al. Designing a high-performance smart drug delivery system for the synergetic co-absorption of DOX and EGCG on ZIF-8. RSC Adv. 2020;10:44533–44544. doi: 10.1039/D0RA08123J
  • Yu J, Yang H, Li K, et al. Development of epigallocatechin-3-gallate-encapsulated nanohydroxyapatite/mesoporous silica for therapeutic management of dentin surface. ACS Appl Mater Interfaces. 2017;9:25796–25807. doi: 10.1021/acsami.7b06597
  • Manea AM, Vasile BS, Meghea A. Antioxidant and antimicrobial activities of green tea extract loaded into nanostructured lipid carriers. C R Chim. 2014;17:331–341. doi: 10.1016/j.crci.2013.07.015
  • Frias I, Neves AR, Pinheiro M, et al. Design, development and characterization of lipid nanocarriers-based epigallocatechin-gallate delivery system for preventive and therapeutic supplementation. Drug Des Devel Ther. 2016;10:3519–3528. doi: 10.2147/DDDT.S109589
  • Bancil AS, Sandall AM, Ross M, et al. Food additive emulsifiers and their impact on gut microbiome, permeability and inflammation: mechanistic insights in inflammatory bowel disease. J Crohn's Colitis. 2021;15(6):1068–1079. doi: 10.1093/ecco-jcc/jjaa254
  • Nielsen CK, Kjems J, Mygind T, et al. Effects of TWEEN 80 on growth and biofilm formation in laboratory media. Front Microbiol. 2016;7:1878. doi: 10.3389/fmicb.2016.01878
  • Bhushani JA, Karthik P, Anandharamakrishnan C. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocolloids. 2016;56:372–382. doi: 10.1016/j.foodhyd.2015.12.035
  • Tsai YJ, Chen BH. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effects on prostate cancer cells PC-3. Int J Nanomedicine. 2016;11:1907–1926.
  • Ding J, Liang T, Min Q, et al. “Stealth and fully-laden” drug carriers: self-assembled nanogels encapsulated with epigallocatechin gallate and sirna for drug-resistant breast cancer therapy. ACS Appl Mater Interfaces. 2018;10:9938–9948. doi: 10.1021/acsami.7b19577
  • Piran F, Khoshkov Z, Hosseini SE, et al. Controlling the antioxidant activity of green tea extract through encapsulation in chitosan-citrate nanogel. J Food Qual. 2020;10(12). Article ID 7935420.
  • Wang H, Zhang H, Gao Z, et al. The mechanism of berberine alleviating metabolic disorder based on gut microbiome. Front Cell Infect Microbiol. 2022;12:854885. doi: 10.3389/fcimb.2022.854885
  • Cho AS, Jeon SM, Kim MJ, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol. 2010;48:937–943. doi: 10.1016/j.fct.2010.01.003
  • Niu B, Chen H, Wu W, et al. Co-encapsulation of chlorogenic acid and cinnamalaldehyde essential oil in pickering emulsion stabilized by chitosan nanoparticles. Food Chem. 2022;14:100312.
  • DiSanto MC, D'Antoni CC, Dominguez-Rubio AP, et al. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − a review. Biomed Pharmacother. 2021;142:111970. doi: 10.1016/j.biopha.2021.111970
  • Goncalves B, Moeenfard M, Rocha F, et al. Microencapsulation of a natural antioxidant from coffee—chlorogenic acid (3-caffeoylquinic acid). Food Bioprocess Technol. 2017;10:1521–1530. doi: 10.1007/s11947-017-1919-y
  • Feng Y, Sun C, Yuan Y, et al. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation. Int J Pharm. 2016;501:342–349. doi: 10.1016/j.ijpharm.2016.01.081
  • Csaki KF. Synthetic surfactant food additives can cause intestinal barrier dysfunction. Med Hypotheses. 2011;76:676–681. doi: 10.1016/j.mehy.2011.01.030
  • Halmos EP, Mack A, Gibson PK. Review article: emulsifiers in the food supply and implications for gastrointestinal disease. Aliment Pharmacol Ther. 2019;49:41–50. doi: 10.1111/apt.15045
  • Sikalidis AK, Kelleher AH, Kristo AS. Mediterranean diet. Encyclopedia. 2021;1:371–387. doi: 10.3390/encyclopedia1020031
  • Li Q, Huang Y, Du Y, et al. Food-grade olive oil pickering emulsions stabilized by starch/β-cyclodextrin complex nanoparticles: improved storage stability and regulatory effects on gut microbiota. LWT. 2022;155:112950. doi: 10.1016/j.lwt.2021.112950
  • Nieto G, Lorenzo JM. Use of olive oil as fat replacer in meat emulsions. Curr Opin Food Sci. 2021;40:179–186. doi: 10.1016/j.cofs.2021.04.007
  • Bidooki SH, Alejo T, Sánchez-Marco J, et al. Squalene loaded nanoparticles effectively protect hepatic AML12 cell lines against oxidative and endoplasmic reticulum stress in a TXNDC5-dependent way. Antioxidants. 2022;11:581. doi: 10.3390/antiox11030581
  • Valentino A, Conte R, De Luca I, et al. Thermo-responsive gel containing hydroxytyrosol-chitosan nanoparticles (Hyt@tgel) counteracts the increase of osteoarthritis biomarkers in human chondrocytes. Antioxidants. 2022;11:1210. doi: 10.3390/antiox11061210
  • Huguet-Casquero A, Moreno-Sastre M, López-Méndez TB, et al. Encapsulation of oleuropein in nanostructured lipid carriers: biocompatibility and antioxidant efficacy in lung epithelial cells. Pharmaceutics. 2020;12:429. doi: 10.3390/pharmaceutics12050429
  • Guo X, Huang Z, Chen J, et al. Synergistic delivery of resveratrol and ultrasmall copper-based nanoparticles by aptamer-functionalized ultrasound nanobubbles for the treatment of nonalcoholic fatty liver disease. Front Physiol. 2022;13:2022.950141.
  • Mastinu A, Kumar A, Maccarinelli G, et al. Zeolite clinoptilolite: therapeutic virtues of an ancient mineral. Molecules. 2019;24:1517. doi: 10.3390/molecules24081517
  • Kraljević Pavelić S, Micek V, Bobinac D, et al. Treatment of osteoporosis with a modified zeolite shows beneficial effects in an osteoporotic rat model and a human clinical trial. Exp Biol Med (Maywood). 2021;246:529–537. doi: 10.1177/1535370220968752
  • Kraljević Pavelić S, Krpan D, Žuvić M, et al. Clinical parameters in osteoporosis patients supplemented with PMA-zeolite at the end of 5-year double-blinded clinical trial. Front Med. 2022;9:870962. doi: 10.3389/fmed.2022.870962
  • Hao J, Stavljenić Milašin I, Batu Eken Z, et al. Effects of zeolite as a drug delivery system on cancer therapy: a systematic review. Molecules. 2021;26(20):6196. doi: 10.3390/molecules26206196
  • Jiang B, Yang Z, Shi H, et al. Potentiation of curcumin-loaded zeolite Y nanoparticles/PCL-gelatin electrospun nanofibers for postsurgical glioblastoma treatment. J Drug Deliv Sci Technol. 2023;80:104105. doi: 10.1016/j.jddst.2022.104105
  • Liu J, Liu S, Wu Y, et al. Curcumin doped zeolitic imidazolate framework nanoplatforms as multifunctional nanocarriers for tumor chemo/immunotherapy. Biomater Sci. 2022;10:2384–2393. doi: 10.1039/D2BM00149G
  • Chen X, Tong R, Liu B, et al. Duo of (-)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating ZIF-8 in the regulation of autophagy for chemo-photothermal synergistic therapy. Biomater Sci. 2020;8:1380–1393. doi: 10.1039/C9BM01614G
  • Tamanai-Shacoori Z, Chandad F, Rébillard A, et al. Silver-zeolite combined to polyphenol-rich extracts of Ascophyllum nodosum: potential active role in prevention of periodontal diseases. PLoS One. 2014;9:e105475. doi: 10.1371/journal.pone.0105475
  • Yaneva Z, Ivanova D, Popov N. Clinoptilolite microparticles as carriers of catechin-rich acacia catechu extracts: microencapsulation and in vitro release study. Molecules. 2021;26:1655. doi: 10.3390/molecules26061655
  • Tondar M, Parsa MJ, Yousefpour Y, et al. Feasibility of clinoptilolite application as a microporous carrier for pH-controlled oral delivery of aspirin. Acta Chim Slov. 2014;61:688–693.
  • Kraljević Pavelić S, Micek V, Filošević A, et al. Novel, oxygenated clinoptilolite material efficiently removes aluminium from aluminium chloride-intoxicated rats in vivo. Microp Mesop Mater. 2017;249:146–156. doi: 10.1016/j.micromeso.2017.04.062
  • Pogorelov AG, Panait AI, Gulin AA, et al. Natural clinoptilolite nanoparticles coated with phosphatidylcholine. Dokl Biochem Biophys. 2022;505:156–159. doi: 10.1134/S160767292204007X
  • Kim C, Shim J, Han S, et al. The skin-permeation-enhancing effect of phosphatidylcholine: caffeine as a model active ingredient. J Cosmet Sci. 2002;53(6):363–374.