17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimized multi-scale framework for image enhancement using spatial information-based histogram equalization

ORCID Icon, , &
Received 16 Oct 2023, Accepted 01 Apr 2024, Published online: 25 Apr 2024

References

  • Zhang G, Jia X, Kwok NM. Super pixel based remote sensing image classification with histogram descriptors on spectral and spatial data. In: 2012 IEEE International Geoscience and Remote Sensing Symposium; 2012. p. 4335–4338.
  • Ma H, Lu N, Ge L, et al. Automatic road damage detection using high-resolution satellite images and road maps. In: 2013 IEEE International Geoscience and Remote Sensing Symposium -- IGARSS; 2013. p. 3718–3721.
  • Bruce J, Balch T, Veloso M. Fast and inexpensive color image segmentation for interactive robots. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113); Vol. 3; 2000. p. 2061–2066.
  • Huang B, Xu T, Jiang S, et al. Robust visual tracking via constrained multi-kernel correlation filters. IEEE Trans Multimed. 2020;22(11):2820–2832. doi: 10.1109/TMM.6046
  • Varol G, Laptev I, Schmid C. Long-term temporal convolutions for action recognition. IEEE Trans Pattern Anal Mach Intell. 2018;40(6):1510–1517. doi: 10.1109/TPAMI.2017.2712608
  • Li J, Liang X, Li J, et al. Multistage object detection with group recursive learning. IEEE Trans Multimed. 2018;20(7):1645–1655. doi: 10.1109/TMM.6046
  • Zhuang P, Ding X. Underwater image enhancement using an edge-preserving filtering retinex algorithm. Multimed Tools Appl. 2020;79(25):17257–17277. doi: 10.1007/s11042-019-08404-4
  • Moftah H, Azar A, Al-Shammari E, et al. Adaptive k-means clustering algorithm for MR breast image segmentation. Neural Comput Appl. 2013 Jun;24:1917–1928.
  • Yu YF, Zhong G, Zhou Y, et al. FS-GAN: fuzzy self-guided structure retention generative adversarial network for medical image enhancement. Inf Sci. 2023;642:119114. doi: 10.1016/j.ins.2023.119114
  • Dong L, Zhang W, Xu W. Underwater image enhancement via integrated RGB and LAB color models. Signal Process Image Commun. 2022;104:116684. doi: 10.1016/j.image.2022.116684
  • Zhou J, Liu Q, Jiang Q, et al. Underwater camera: improving visual perception via adaptive dark pixel prior and color correction. Int J Comput Vis. 2023:1–19.
  • Zhou J, Zhang D, Ren W, et al. Auto color correction of underwater images utilizing depth information. IEEE Geosci Remote Sens Lett. 2022;19:1–5.
  • Feng X, Li J, Hua Z. Low-light image enhancement algorithm based on an atmospheric physical model. Multimed Tools Appl. 2020;79(43):32973–32997. doi: 10.1007/s11042-020-09562-6
  • Vijayalakshmi D, Nath MK, Acharya OP. A comprehensive survey on image contrast enhancement techniques in spatial domain. Sens Imaging. 2020 Jul;21:1–40. doi: 10.1007/s11220-020-00305-3
  • Vijayalakshmi D, Nath MK. A novel multilevel framework based contrast enhancement for uniform and non-uniform background images using a suitable histogram equalization. Digit Signal Process. 2022;127:1–19.
  • Hum YC, Tee YK, Yap WS, et al. A contrast enhancement framework under uncontrolled environments based on just noticeable difference. Signal Process Image Commun. 2022;103:116657. doi: 10.1016/j.image.2022.116657
  • Vijayalakshmi D, Nath MK. A novel contrast enhancement technique using gradient-based joint histogram equalization. Circ Syst Signal Process. 2021 Feb;40:3929–3967. doi: 10.1007/s00034-021-01655-3
  • Zuiderveld K. Contrast limited adaptive histogram equalization.Academic Press; 1994. p. 474–485.
  • Kim YT. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron. 1997 Feb;43(1):1–8. doi: 10.1109/TCE.2002.1010085
  • Wang Y, Chen Q, Zhang B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans Consum Electron. 1999 Feb;45(1):68–75. doi: 10.1109/TCE.30
  • Dhurairajan V, Elangovan P, Nath MK. Renyi entropy based Bi-histogram equalization for contrast enhancement of MRI brain images. 2021.
  • Chen SD, Ramli AR. Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans Consum Electron. 2003 Nov;49(4):1301–1309. doi: 10.1109/TCE.2003.1261233
  • Ooi CH, Kong NSP, Ibrahim H. Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Trans Consum Electron. 2009 Nov;55(4):2072–2080. doi: 10.1109/TCE.2009.5373771
  • Tang JR, Isa NAM. Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Comput Electr Eng. 2014 Nov;40(8):86–103. doi: 10.1016/j.compeleceng.2014.05.017
  • Wang X, Chen L. Contrast enhancement using feature-preserving bi-histogram equalization. Signal Image Video Process. 2018 May;12(4):685–692. doi: 10.1007/s11760-017-1208-2
  • Mun J, Jang Y, Nam Y, et al. Edge-enhancing bi-histogram equalisation using guided image filter. J Vis Commun Image Represent. 2019 Jan;58:688–700. doi: 10.1016/j.jvcir.2018.12.037
  • Vijayalakshmi D, Nath MK. A compendious analysis of advances in the methods for contrast enhancement. In: Harvey D, Kar H, Verma S, et al, editors. Advances in VLSI, communication, and signal processing. Prayagraj: Springer; 2021. p. 325–346.
  • Celik T. Spatial entropy-based global and local image contrast enhancement. IEEE Trans Image Process. 2014 Dec;23(12):5298–5308. doi: 10.1109/TIP.2014.2364537
  • Celik T, Li HC. Residual spatial entropy-based image contrast enhancement and gradient-based relative contrast measurement. J Mod Opt. 2016 Jun;63(16):1600–1617. doi: 10.1080/09500340.2016.1163427
  • Lee C, Lee C, Kim C. Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans Image Process. 2013 Dec;22(12):5372–5384. doi: 10.1109/TIP.2013.2284059
  • Agrawal S, Panda R, Mishro P, et al. A novel joint histogram equalization based image contrast enhancement. J King Saud Univ Comput Inf Sci. 2019;34(4):1172–1182.
  • Vijayalakshmi D, Nath MK. A systematic approach for enhancement of homogeneous background images using structural information. Graph Models. 2023;130:101206. doi: 10.1016/j.gmod.2023.101206
  • Vijayalakshmi D, Nath MK. A strategic approach towards contrast enhancement by two-dimensional histogram equalization based on total variational decomposition. Multimed Tools Appl. 2023;82(13):19247–19274. doi: 10.1007/s11042-022-13932-7
  • Fu X, Zeng D, Huang Y, et al. A fusion-based enhancing method for weakly illuminated images. Signal Process. 2016 Dec;129:82–96. doi: 10.1016/j.sigpro.2016.05.031
  • Guo X, Li Y, Ling H. LIME: low-light image enhancement via illumination map estimation. IEEE Trans Image Process. 2017 Feb;26(2):982–993. doi: 10.1109/TIP.2016.2639450
  • Li M, Liu J, Yang W, et al. Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans Image Process. 2018 Jun;27(6):2828–2841. doi: 10.1109/TIP.2018.2810539
  • Liu R, Cheng S, Ma L, et al. Deep proximal unrolling: algorithmic framework, convergence analysis and applications. IEEE Trans Image Process. 2019;28(10):5013–5026. doi: 10.1109/TIP.83
  • Zhang H, Patel VM. Density-aware single image de-raining using a multi-stream dense network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA; 2018. p. 695–704.
  • Hui TW, Tang X, Loy CC. Liteflownet: a lightweight convolutional neural network for optical flow estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA; 2018. p. 8981–8989.
  • Wei C, Wang W, Yang W, et al. Deep retinex decomposition for low-light enhancement. In: British Machine Vision Conference, Northumbria University, UK; 2018.
  • Li C, Guo J, Porikli F, et al. Lightennet: a convolutional neural network for weakly illuminated image enhancement. Pattern Recognit Lett. 2018 Mar;104:15–22. doi: 10.1016/j.patrec.2018.01.010
  • Jiang Y, Gong X, Liu D, et al. Enlightengan: deep light enhancement without paired supervision. IEEE Trans Image Process. 2021;30:2340–2349. doi: 10.1109/TIP.2021.3051462
  • Zamir SW, Arora A, Khan S, et al. Learning enriched features for real image restoration and enhancement; 2020.
  • Cai J, Gu S, Zhang L. Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans Image Process. 2018;27(4):2049–2062. doi: 10.1109/TIP.2018.2794218
  • Chen C, Chen Q, Xu J, et al. Learning to see in the dark. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA; 2018. p. 3291–3300.
  • Lu K, Zhang L. TBEFN: a two-branch exposure-fusion network for low-light image enhancement. IEEE Trans Multimed. 2021;23:4093–4105. doi: 10.1109/TMM.2020.3037526
  • Xu K, Yang X, Yin B, et al. Learning to restore low-light images via decomposition-and-enhancement. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA; 2020. p. 2278–2287.
  • Li C, Guo C, Chen CL. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans Pattern Anal Mach Intell. 2021;44:4225–4238.
  • Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE Trans Commun. 1983 Apr;31(4):532–540. doi: 10.1109/TCOM.1983.1095851
  • Cao G, Tian H, Yu L, et al. Acceleration of histogram-based contrast enhancement via selective downsampling. IET Image Process. 2018 Mar;12(3):447–452. doi: 10.1049/ipr2.v12.3
  • Gu K, Zhai G, Lin W, et al. The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans Cybern. 2016;46(1):284–297. doi: 10.1109/TCYB.2015.2401732
  • Available from: http://r0k.us/graphics/kodak/.
  • Wei C, Wang W, Yang W, et al. Deep retinex decomposition for low-light enhancement; 2018.
  • Gloe T, Böhme R. The ‘Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of the 25th Symposium On Applied Computing (ACM SAC 2010); Vol. 2; 2010. p. 1585–1591.
  • Zhou J, Pang L, Zhang D, et al. Underwater image enhancement method via multi-interval subhistogram perspective equalization. IEEE J Ocean Eng. 2023;48:474–488.
  • Zhou J, Wang Y, Li C, et al. Multicolor light attenuation modeling for underwater image restoration. IEEE J Ocean Eng. 2023;48:1322–1337.
  • Jebadass JR, Balasubramaniam P. Color image enhancement technique based on interval-valued intuitionistic fuzzy set. Inf Sci. 2024;653:119811. doi: 10.1016/j.ins.2023.119811
  • Vijayalakshmi D, Nath MK. Taxonomy of performance measures for contrast enhancement. Pattern Recognit Image Anal. 2021 Jan;30:691–701. doi: 10.1134/S1054661820040240
  • Zeng P, Dong H, Chi J, et al. An approach for wavelet based image enhancement. In: 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China; 2004.
  • Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948 Jul;27(3):379–423. doi: 10.1002/bltj.1948.27.issue-3
  • Mittal A, Soundararajan R, Bovik AC. Making a “completely blind” image quality analyzer. IEEE Signal Process Lett. 2013 Mar;20(3):209–212. doi: 10.1109/LSP.2012.2227726
  • Celik T. Two-dimensional histogram equalization and contrast enhancement. Pattern Recognit. 2012;45(10):3810–3824. doi: 10.1016/j.patcog.2012.03.019
  • Al-Ameen Z. Contrast enhancement of medical images using statistical methods with image processing concepts. In: 2020 6th International Engineering Conference “Sustainable Technology and Development” (IEC), Erbil, Iraq; IEEE; 2020. p. 169–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.