Publication Cover
Mathematical and Computer Modelling of Dynamical Systems
Methods, Tools and Applications in Engineering and Related Sciences
Volume 30, 2024 - Issue 1
305
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dual-porosity approach: heat transfer and heat storage processes in porous media

, , , , , , , , & show all
Pages 202-227 | Received 07 Sep 2023, Accepted 01 Mar 2024, Published online: 01 May 2024

References

  • Barbe S, Kneer A. 2020. Virtual Material Design: A Powerful Tool for the Development of High-Efficiency Porous Media. In: Membrane Desalination. CRC Press; pp. 269–283.
  • Bejan A. 2013. Convection heat transfer. Heboken, New Jersey: John wiley & sons.
  • bulletphysics.org. 2022. Bullet real-time physics simulation. Weblink.
  • CD-adapco (Ed.), User Guide StarCCM+, Vol. 7.04.006, CD-adapco, 2012.
  • Dostál Z, Ladányi L. 2018. Demands on energy storage for renewable power sources. J Energy Storage URL. 18:250–255. https://www.sciencedirect.com/science/article/pii/S2352152X17303857
  • Durlofsky L, Brady J. 1987. Analysis of the Brinkman equation as a model for flow in porous media. Phys Fluids. 30(11):3329–3341. doi: 10.1063/1.866465.
  • Ferziger J, Peric M. 1997. Computational methods for fluid dynamics. Heidelberg: Springer.
  • Hernandez A. 2005. Combined Flow and Heat Transfer Characterization of open cell Aluminium Foams, Master Thesis, University of Puerto Rico.
  • Hötzer J, Reiter A, Hierl H, Steinmetz P, Selzer M, Nestler B. 2018. The parallel multi-physics phase-field framework PACE3D. J Comput Sci. 26:1–12. doi: 10.1016/j.jocs.2018.02.011.
  • Jarullah A, Noor A. 2019. Energy consumption and heat recovery of an industrial fluidized catalytic cracking process based on cost savings. Appl Petrochem Res. 9(1):1–11. doi: 10.1007/s13203-018-0217-6.
  • Kneer A, Ed. 2022. User guide TinFlow, vol. V2.402. TinniT Technologies GmbH.
  • Kopanadis AGE, Theodorakakos BD, Gavaises E, Bouris D. 2010. 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. International Journal Of Heat And Mass Transfer. 53(11–12):2539–2550. doi: 10.1016/j.ijheatmasstransfer.2009.12.067.
  • Kulagin R, Reiser P, Truskovskyi K, Koeppe A, Beygelzimer Y, Estrin Y, Friederich P, Gumbsch P. 2023. Lattice metamaterials with mesoscale motifs: exploration of property charts by Bayesian optimization. Adv Eng Mater. 25(13):2300048. doi: 10.1002/adem.202300048.
  • Kunii D, Suzuki M. 1967. Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int J Heat Mass Transfer. 10(1967):845–852. Pergamon Press Ltd. doi: 10.1016/0017-9310(67)90064-6.
  • Laurien JH, und Oertel E. 2003. Numerische Strömungsmechanik, Vol. 8. überarbeitete Auflage, Viehweg Verlag, Fried. Braunschweig/Wiesbaden: Vieweg und Sohn Verlagsgesellschaft mbH.
  • Nield D, Bejan A. 2013. Convection in porous media. 4th ed. New York Heidelberg Dordrecht London: Springer.
  • Peszynska A, Trykozko M, Sobieski W. 2010. Forchheimer law in computational and experimental studies of flow through porous media at porescale and mesoscale. GAKUTO International Series, Mathematical Sciences And Applications. 32:463–482.
  • Pierro L, Matturro B, Rossetti S, Sagliaschi M, Sucato S, Alesi E, Bartsch E, Arjmand F, Petrangeli PM. 2017. Polyhydroxyalkanoate as a slow-release carbon source for in situ bioremediation of contaminated aquifers: from laboratory investigation to pilot-scale testing in the field. New Biotechnol. 37:60–68. doi: 10.1016/jnbt.2016.11.004.
  • Prajapati N, Hermann C, Späth M, Schneider D, Selzer M, Nestler B. 2020. Brittle anisotropic fracture propagation in Quartz Sandstone: insights from phase-field simulations. Comput Geosci. 24(3):1361–1376. doi: 10.1007/s10596-020-09956-3.
  • Prajapati N, Selzer M, Nestler B, Busch B, Hilgers C, Ankit K. 2018. Three-dimensional phase- field investigation of pore space cementation and permeability in Quartz Sandstone. JGR Solid Earth. 123(8):6378–6396. doi: 10.1029/2018JB015618.
  • Quintard M, Whitaker S. 1994a. Convection, Dispersion, and interfacial Transport of Contaminants: Homogeneous porous Media. Adv Water Resour. 17(4):221–239. doi: 10.1016/0309-1708(94)90002-7.
  • Quintard M, Whitaker S. 1994b. Transport in ordered and disordered porous media IV: computer generated porous media for three-dimensional systems. Transp Porous Media. 15(1):51–70. doi: 10.1007/BF01046158.
  • Quintard M, Whitaker S. 1997a. Transport in chemically and mechanically heterogeneous porous media - IV, large-scale mass equilibrium for solute transport with adsorption. Adv Water Resour. 22(1):33–57. doi: 10.1016/S0309-1708(97)00027-4.
  • Quintard M, Whitaker S. 1997b. Transport in chemically and mechanically heterogeneous porous media—III. Large-scale mechanical equilibrium and the regional form of Darcy’s law. Adv Water Resour. 21(7):617–629. doi: 10.1016/S0309-1708(97)00015-8.
  • Qu Z, Xu H, Wang T, Tao W, Lu T. 2013. Thermal transport in metallic porous media, key laboratory of thermal fluid science and engineering, key laboratory of strength and vibration. China www.intechopen.com:UniversityinXi’an.
  • Schlichting H, Gersten K. 2003. Grenzschichttheorie. Berlin Heidelberg: Springer-Verlag.
  • Shi Z, Wang X, Comparison of Darcy’s law, the Brinkman equation, the modified N-S equation and the pure diffusion equation in PEM fuel cell modeling, in: Comsol conference, Boston, 2007.
  • Simons S, Schmitt J, Tom B, Bao H, Pettinato B, Pechulis M. 2021. Chapter 10 - advanced concepts. in Brun K, Allison T Dennis R. editors. Thermal, mechanical, and hybrid chemical energy storage systems. Academic Press. pp. 569–596. doi: 10.1016/B978-0-12-819892-6.00010-1
  • Sommer W, Drijver B, Verburg R, Slenders H, De Vries E, Dinkla I, Leusbrock I, Grotenhuis T. 2013. Combining shallow geothermal energy and groundwater remediation. European Geothermal Congress. https://library.wur.nl/WebQuery/wurpubs/fulltext/264023.
  • Srinivasan S, Nakshatrala K. 2010. A stabilizes mixed formulation for unsteady Brinkman equation based on the method of horizontal lines, cs.NA. Int J Numer Methods Fluids. 68(5):642–670. doi: 10.1002/fld.2544.
  • Summ G, Lösbarkeit und Dikretisierung der gemischten Formulierung für Darcy-Forchheimer- Fluss in porösen Medien, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Naturwissenschaftliche Fakultäten (2001).
  • Taylor GI. 1954.“Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion.” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 225.1163; pp. 473–477.
  • Toride FVGM, Leij N, The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments version 2.1, Tech. rep. (1999).
  • Vafai K, Tien C. 1981. Boundary and inertia effects on flow and heat transfer in porous media. J Heat Transfer. 24(2):195–203. doi: 10.1016/0017-9310(81)90027-2.
  • van Genuchten M, Wagenet R. 1989. Two-site-two-region models for pesticide transport and degradation: theoretical development and analytical solutions. Vol. 53. Amsterdam: Soil Science Society; pp. 1303–1310.
  • Vdi VGVUCG. 2006. Verein Deutscher Ingenieure, VDI-Wärmeatlas. 10th ed. Berlin, Heidelberg, New-York: Springer.
  • Whitaker S. 1967. Diffusion and dispersion in porous media, A.I.Ch.E. AichE J. 13(3):420–427. doi: 10.1002/aic.690130308.
  • Whitaker S. 1986a. Flow in porous media I: a theoretical derivation of Darcy’s law. Transp Porous Media. 1(1):3–25. doi: 10.1007/BF01036523.
  • Whitaker S. 1986b. Flow in porous media II: the governing equations for immiscible, two-phase flow, transport in porous media. Transp Porous Media. 1(2):105–125. doi: 10.1007/BF00714688.
  • Whitaker S. 1996. The Forchheimer equation: a theoretical development. Transp Porous Media. 25(1):27–61. doi: 10.1007/BF00141261.
  • Xu J, Li Y, Wang R, Liu W. 2014. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy. 67:63–73. doi: 10.1016/j.energy.2014.01.049
  • Yang K, Vafai K. 2011. Transient aspects of heat flux bifurcation in porous media: an exact solution. J Heat Transfer. 133(52602):1–12. doi: 10.1115/1.4003047.
  • Zhao Y, Altschuh P, Santoki J, Griem L, Tosato G, Selzer M, Koeppe A, Nestler B. 2023. Characterization of porous membranes using artificial neural networks. Acta Mater. 253:118922. doi: 10.1016/j.actamat.2023.118922.
  • Zhu ZH, Wen Q, Zhan H, Yuan S. 2020. Optimization strategies for in situ groundwater remediation by a vertical circulation well based on particle-tracking and node dependent finite difference methods. Water Resour. 56(11): doi: 10.1029/2020WR027396.
  • Zierep J, Bühler K. 2010. Grundzüge der Strömungslehre. In: überarbeitete Auflage, Viehweg +. Teubner Verlag, Springer Fachmedien Wiesbaden GmbH; pVol. 8.