726
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of landmark visualization style on task performance, visual attention, and spatial learning in a real-world navigation task

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1). https://doi.org/10.18637/jss.v067.i01
  • Brockmole, J. R., & Henderson, J. M. (2008). Prioritizing new objects for eye fixation in real-world scenes: Effects of object–scene consistency. Visual Cognition, 16(2–3), 375–390. https://doi.org/10.1080/13506280701453623
  • Chan, E., Baumann, O., Bellgrove, M. A., & Mattingley, J. B. (2012). From objects to landmarks: The function of visual location information in spatial navigation. Frontiers in Psychology, 3, 3. https://doi.org/10.3389/fpsyg.2012.00304
  • Chrastil, E. R. (2013). Neural evidence supports a novel framework for spatial navigation. Psychonomic Bulletin & Review, 20(2), 208–227. https://doi.org/10.3758/s13423-012-0351-6
  • Chrastil, E. R., & Warren, W. H. (2012). Active and passive contributions to spatial learning. Psychonomic Bulletin & Review, 19(1), 1–23. https://doi.org/10.3758/s13423-011-0182-x
  • Cliburn, D., Winlock, T., Rilea, S., & Van Donsel, M. (2007). Dynamic landmark placement as a navigation aid in virtual worlds. Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology (VRST ’07) (pp. 211–214). https://doi.org/10.1145/1315184.1315225
  • Cornelissen, T. H. W., & Võ, M. L.-H. (2017). Stuck on semantics: Processing of irrelevant object-scene inconsistencies modulates ongoing gaze behavior. Attention, Perception, & Psychophysics, 79(1), 154–168. https://doi.org/10.3758/s13414-016-1203-7
  • Couclelis, H., Golledge, R. G., Gale, N., & Tobler, W. (1987). Exploring the anchor-point hypothesis of spatial cognition. Journal of Environmental Psychology, 7(2), 99–122. https://doi.org/10.1016/S0272-4944(87)80020-8
  • Credé, S., Thrash, T., Hölscher, C., & Fabrikant, S. I. (2020). The advantage of globally visible landmarks for spatial learning. Journal of Environmental Psychology, 67(October 2019), 101369. https://doi.org/10.1016/j.jenvp.2019.101369
  • Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), 6310. https://doi.org/10.1038/s41598-020-62877-0
  • DeBruine, L. M., & Barr, D. J. (2021). Understanding mixed-effects models through data simulation. Advances in Methods and Practices in Psychological Science, 4(1), 251524592096511. https://doi.org/10.1177/2515245920965119
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Denis, M., Mores, C., Gras, D., Gyselinck, V., & Daniel, M.-P. (2014). Is memory for routes enhanced by an environment’s richness in visual landmarks? Spatial Cognition & Computation, 14(4), 284–305. https://doi.org/10.1080/13875868.2014.945586
  • Dillemuth, J. (2005). Map Design Evaluation for Mobile Display. Cartography and Geographic Information Science, 32(4), 285–301. https://doi.org/10.1559/152304005775194773
  • Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., & Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: Analyses and review. Journal of Experimental Psychology: General, 140(4), 552–572. https://doi.org/10.1037/a0023885
  • Ekstrom, A. D. (2015). Why vision is important to how we navigate. Hippocampus, 25(6), 731–735. https://doi.org/10.1002/hipo.22449
  • Elias, B., & Paelke, V. (2008). User-centered design of landmark visualizations. In L. Meng, A. Zipf, & S. Winter (Eds.), Map-based mobile services. Lecture notes in geoinformation and cartography (pp. 33–56). Springer. https://doi.org/10.1007/978-3-540-37110-6_3
  • Engbert, R., & Kliegl, R. (2003). Microsaccades uncover the orientation of covert attention. Vision Research, 43(9), 1035–1045. https://doi.org/10.1016/S0042-6989(03)00084-1
  • Engbert, R., & Mergenthaler, K. (2006). Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences, 103(18), 7192–7197. https://doi.org/10.1073/pnas.0509557103
  • Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504–1513. https://doi.org/10.1038/nn.4656
  • Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120533. https://doi.org/10.1098/rstb.2012.0533
  • Fabrikant, S. I. (2023a). Neuroadaptive LBS: Towards human-, context-, and task-adaptive mobile geographic information displays to support spatial learning for pedestrian navigation. Journal of Location Based Services, 17(4), 340–354. https://doi.org/10.1080/17489725.2023.2258100
  • Fabrikant, S. I. (2023b). Neuroadaptive mobile geographic information displays: An emerging cartographic research frontier. Advances in Cartography and GIScience of the International Cartographic Association, 1–17. https://doi.org/10.1080/23729333.2023.2253645
  • Fine, M. S., & Minnery, B. S. (2009). Visual salience affects performance in a working memory task. Journal of Neuroscience, 29(25), 8016–8021. https://doi.org/10.1523/JNEUROSCI.5503-08.2009
  • Franke, C., & Schweikart, J. (2017). Mental representation of landmarks on maps: Investigating cartographic visualization methods with eye tracking technology. Spatial Cognition and Computation, 17(1–2), 20–38. https://doi.org/10.1080/13875868.2016.1219912
  • Friedman, A., Kohler, B., Gunalp, P., Boone, A. P., & Hegarty, M. (2020). A computerized spatial orientation test. Behavior Research Methods, 52(2), 799–812. https://doi.org/10.3758/s13428-019-01277-3
  • Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4), 319–350. https://doi.org/10.1080/13875868.2013.792821
  • Gardony, A. L., Brunyé, T. T., & Taylor, H. A. (2015). Navigational aids and spatial memory impairment: The role of divided attention. Spatial Cognition & Computation, 15(4), 246–284. https://doi.org/10.1080/13875868.2015.1059432
  • Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge (Ed.), Wayfinding behavior: Cognitive mapping and other spatial processes (pp. 5–45). Johns Hopkins University Press.
  • Green, P., MacLeod, C. J., & Nakagawa, S. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
  • Hamid, S. N., Stankiewicz, B., & Hayhoe, M. (2010). Gaze patterns in navigation: Encoding information in large-scale environments. Journal of Vision, 10(12), 28–28. https://doi.org/10.1167/10.12.28
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. In P. Hancock & N. Meshkati (Eds.), Advances in psychology (Vol. 52, pp. 139–183). North-Holland. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Heft, H. (1979). The role of environmental features in route-learning: Two exploratory studies of way-finding. Environmental Psychology and Nonverbal Behavior, 3(3), 172–185. https://doi.org/10.1007/BF01142591
  • Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005
  • Hegarty, M., Smallman, H. S., & Stull, A. T. (2012). Choosing and using geospatial displays: Effects of design on performance and metacognition. Journal of Experimental Psychology: Applied, 18(1), 1–17. https://doi.org/10.1037/a0026625
  • Hegarty, M., Smallman, H. S., Stull, A. T., & Canham, M. S. (2009). Naïve cartography: How intuitions about display configuration can hurt performance. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 171–186. https://doi.org/10.3138/carto.44.3.171
  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001
  • Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15–24. https://doi.org/10.1016/j.ijhcs.2018.04.006
  • Hilton, C., Wiener, J., & Johnson, A. (2021). Serial memory for landmarks encountered during route navigation. Quarterly Journal of Experimental Psychology, 74(12), 2137–2153. https://doi.org/10.1177/17470218211020745
  • Hirtle, S. C., & Hudson, J. (1991). Acquisition of spatial knowledge for routes. Journal of Environmental Psychology, 11(4), 335–345. https://doi.org/10.1016/S0272-4944(05)80106-9
  • Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.
  • Ishikawa, T. (2019). Satellite navigation and geospatial awareness: Long-term effects of using navigation tools on wayfinding and spatial orientation. The Professional Geographer, 71(2), 197–209. https://doi.org/10.1080/00330124.2018.1479970
  • Ishikawa, T. (2023). Individual differences and skill training in cognitive mapping: How and why people differ. Topics in Cognitive Science, 15(1), 163–186. https://doi.org/10.1111/tops.12605
  • Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28(1), 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002
  • Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52(2), 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003
  • Jansen-Osmann, P., & Fuchs, P. (2006). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment. Experimental Psychology, 53(3), 171–181. https://doi.org/10.1027/1618-3169.53.3.171
  • Kapaj, A., Lanini-Maggi, S., & Fabrikant, S. I. (2021). The influence of landmark visualization style on expert wayfinders’ visual attention during areal-world navigation task. UC Santa Barbara: Center for Spatial Studies. https://doi.org/10.25436/E2NP44
  • Kapaj, A., Lanini-Maggi, S., Hilton, C., Cheng, B., & Fabrikant, S. I. (2023). How does the design of landmarks on a mobile map influence wayfinding experts’ spatial learning during a real-world navigation task? Cartography and Geographic Information Science, 50(2), 197–213. https://doi.org/10.1080/15230406.2023.2183525
  • Kapaj, A., Lin, E., & Lanini-Maggi, S. (2022). The effect of abstract vs. realistic 3D visualization on landmark and route knowledge acquisition, In T. Ishikawa, S. I. Fabrikant, & S. Winter Eds., 15th international conference on spatial information theory (COSIT 2022). Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 240, pp. 15:1–15:8). https://doi.org/10.4230/LIPIcs.COSIT.2022.15
  • Keil, J., Edler, D., Reichert, K., Dickmann, F., & Kuchinke, L. (2020). Structural salience of landmark pictograms in maps as a predictor for object location memory performance. Journal of Environmental Psychology, 72, 101497. https://doi.org/10.1016/j.jenvp.2020.101497
  • Kiefer, P., Giannopoulos, I., & Raubal, M. (2014). Where am i? Investigating map matching during self-localization with mobile eye tracking in an urban environment. Transactions in GIS, 18(5), 660–686. https://doi.org/10.1111/tgis.12067
  • Koletsis, E., van Elzakker, C. P. J. M., Kraak, M.-J., Cartwright, W., Arrowsmith, C., & Field, K. (2017). An investigation into challenges experienced when route planning, navigating and wayfinding. International Journal of Cartography, 3(1), 4–18. https://doi.org/10.1080/23729333.2017.1300996
  • Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756. https://doi.org/10.3758/BF03200477
  • Kray, C., Elting, C., Laakso, K., & Coors, V. (2003). Presenting route instructions on mobile devices. In Proceedings of the 8th International Conference on Intelligent User Interfaces (pp. 117–124). https://doi.org/10.1145/604045.604066
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
  • Lanini-Maggi, S., Ruginski, I. T., Shipley, T. F., Hurter, C., Duchowski, A. T., Briesemeister, B. B., Lee, J., & Fabrikant, S. I. (2021). Assessing how visual search entropy and engagement predict performance in a multiple-objects tracking air traffic control task. Computers in Human Behavior Reports, 4, 100127. https://doi.org/10.1016/j.chbr.2021.100127
  • Lei, T.-C., Wu, S.-C., Chao, C.-W., & Lee, S.-H. (2016). Evaluating differences in spatial visual attention in wayfinding strategy when using 2D and 3D electronic maps. Geo Journal, 81(2), 153–167. https://doi.org/10.1007/s10708-014-9605-3
  • Lenth, R. V. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.8.9). https://CRAN.R-project.org/package=emmeans
  • Liao, H., Dong, W., Peng, C., & Liu, H. (2017). Exploring differences of visual attention in pedestrian navigation when using 2D maps and 3D geo-browsers. Cartography and Geographic Information Science, 44(6), 474–490. https://doi.org/10.1080/15230406.2016.1174886
  • Lokka, I. E., & Çöltekin, A. (2019). Toward optimizing the design of virtual environments for route learning: Empirically assessing the effects of changing levels of realism on memory. International Journal of Digital Earth, 12(2), 137–155. https://doi.org/10.1080/17538947.2017.1349842
  • Luke, S. G. (2017). Evaluating significance in linear mixed-effects models in R. Behavior Research Methods, 49(4), 1494–1502. https://doi.org/10.3758/s13428-016-0809-y
  • MacEachren, A. M. (2004). How maps work: Representation, visualization, and design. Guilford Press.
  • Makowski, D. (2018). The psycho package: An efficient and publishing-oriented workflow for psychological science. The Journal of Open Source Software, 3(22), 470. https://doi.org/10.21105/joss.00470
  • Montello, D. R. (1997). The perception and cognition of environmental distance: Direct sources of information. In S. C. Hirtle & A. U. Frank (Eds.), Spatial information theory a theoretical basis for GIS. COSIT 1997 (Vol. 1329, pp. 297–311). Springer. https://doi.org/10.1007/3-540-63623-4_57
  • Montello, D. R. (1998). A new framework for understanding the acquisition. In M. J. Egenhofer & R. G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143–154). Oxford University Press.
  • Montello, D. R. (2005). Navigation. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 257–294). Cambridge University Press. https://doi.org/10.1017/CBO9780511610448.008
  • Montello, D. R., Fabrikant, S. I., & Davies, C. (2018). Cognitive perspectives on cartography and other geographic information visualizations. In D. R. Montello (Ed.), Handbook of behavioral and cognitive geography (pp. 177–196). Edward Elgar Publishing. https://doi.org/10.4337/9781784717544.00018
  • Münzer, S., Fehringer, B. C. O. F., & Kühl, T. (2016). Validation of a 3-factor structure of spatial strategies and relations to possession and usage of navigational aids. Journal of Environmental Psychology, 47, 66–78. https://doi.org/10.1016/j.jenvp.2016.04.017
  • Münzer, S., & Hölscher, C. (2011). Entwicklung und Validierung eines Fragebogens zu räumlichen Strategien. Diagnostica, 57(3), 111–125. https://doi.org/10.1026/0012-1924/a000040
  • Münzer, S., Zimmer, H. D., Schwalm, M., Baus, J., & Aslan, I. (2006). Computer-assisted navigation and the acquisition of route and survey knowledge. Journal of Environmental Psychology, 26(4), 300–308. https://doi.org/10.1016/j.jenvp.2006.08.001
  • Newcombe, N. S. (2018). Individual variation in human navigation. Current Biology, 28(17), R1004–R1008. https://doi.org/10.1016/j.cub.2018.04.053
  • Newcombe, N. S., Hegarty, M., & Uttal, D. (2022). Building a cognitive science of human variation: Individual Differences in Spatial Navigation. Topics in Cognitive Science, 0(1), 6–14. https://doi.org/10.1111/tops.12626
  • Nothegger, C., Winter, S., & Raubal, M. (2004). Selection of salient features for route directions. Spatial Cognition & Computation, 4(2), 113–136. https://doi.org/10.1207/s15427633scc0402_1
  • Oulasvirta, A., Estlander, S., & Nurminen, A. (2009). Embodied interaction with a 3D versus 2D mobile map. Personal and Ubiquitous Computing, 13(4), 303–320. https://doi.org/10.1007/s00779-008-0209-0
  • Plesa, M. A., & Cartwright, W. (2008). Evaluating the Effectiveness of Non-Realistic 3D maps for navigation with Mobile devices. In L. Meng, A. Zipf, & S. Winter (Eds.), Map-based mobile services. Lecture notes in geoinformation and cartography (pp. 80–104). Springer. https://doi.org/10.1007/978-3-540-37110-6_5
  • Ramanoël, S., Durteste, M., Bizeul, A., Ozier‐Lafontaine, A., Bécu, M., Sahel, J., Habas, C., & Arleo, A. (2022). Selective neural coding of object, feature, and geometry spatial cues in humans. Human Brain Mapping, 43(17), 5281–5295. https://doi.org/10.1002/hbm.26002
  • Raubal, M., & Winter, S. (2002). Enriching wayfinding instructions with local landmarks. In M. J. Egenhofer & D. M. Mark (Eds.), International conference on geographic information science (pp. 243–259). https://doi.org/10.1007/3-540-45799-2_17
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. https://doi.org/10.3758/BF03211566
  • Richter, K.-F., & Winter, S. (2014). Landmarks. Springer.
  • Rosenholtz, R., Li, Y., & Nakano, L. (2007). Measuring visual clutter. Journal of Vision, 7(2), 17. https://doi.org/10.1167/7.2.17
  • Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12–20. https://doi.org/10.1016/j.jenvp.2019.05.001
  • Schleicher, R., Galley, N., Briest, S., & Galley, L. (2008). Blinks and saccades as indicators of fatigue in sleepiness warnings: Looking tired? Ergonomics, 51(7), 982–1010. https://doi.org/10.1080/00140130701817062
  • Sharma, G., Kaushal, Y., Chandra, S., Singh, V., Mittal, A. P., & Dutt, V. (2017). Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Frontiers in Psychology, 8(JUL), 1–12. https://doi.org/10.3389/fpsyg.2017.01220
  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). JAI. https://doi.org/10.1016/S0065-2407(08)60007-5
  • Singmann, H., & Kellen, D. (2019). An introduction to mixed models for experimental psychology. In D. Spieler & E. Schumacher (Eds.), New methods in cognitive psychology (pp. 4–31). Routledge.
  • Steck, S. D., & Mallot, H. A. (2000). The role of global and local landmarks in virtual environment navigation. Presence Teleoperators & Virtual Environments, 9(1), 69–83. https://doi.org/10.1162/105474600566628
  • Tanner, W. P., & Swets, J. A. (1954). A decision-making theory of visual detection. Psychological Review, 61(6), 401–409. https://doi.org/10.1037/h0058700
  • Thrash, T., Fabrikant, S. I., Brügger, A., Do, C. T., Huang, H., Richter, K. F., Lanini-Maggi, S., Bertel, S., Credé, S., Gartner, G., & Münzer, S. (2019). The future of geographic information displays from giscience, cartographic, and cognitive science perspectives. In S. Timpf, C. Schlieder, M. Kattenbeck, B. Ludwig, & K. Stewart (Eds.), 14th international conference on spatial information theory (COSIT 2019). Leibniz International Proceedings in Informatics (LIPIcs) (Vol. 142, pp. 19:1–19:11). https://doi.org/10.4230/LIPIcs.COSIT.2019.19
  • Tonsen, M., Baumann, C. K., & Dierkes, K. (2020). A high-level description and performance evaluation of pupil invisible. ArXiv Preprint. https://doi.org/10.48550/ARXIV.2009.00508
  • Van Asselen, M., Fritschy, E., & Postma, A. (2006). The influence of intentional and incidental learning on acquiring spatial knowledge during navigation. Psychological Research Psychologische Forschung, 70(2), 151–156. https://doi.org/10.1007/s00426-004-0199-0
  • Velichkovsky, B. B., Khromov, N., Korotin, A., Burnaev, E., & Somov, A. (2019). Visual fixations duration as an indicator of skill level in eSports. In D. Lamas, F. Loizides, L. Nacke, H. Petrie, M. Winckler, & P. Zaphiris (Eds.), Human-computer interaction – INTERACT 2019 (Vol. 11746, pp. 397–405). Springer. https://doi.org/10.1007/978-3-030-29381-9_25
  • Waller, D., & Lippa, Y. (2007). Landmarks as beacons and associative cues: Their role in route learning. Memory & Cognition, 35(5), 910–924. https://doi.org/10.3758/BF03193465
  • Wenczel, F., Hepperle, L., & von Stülpnagel, R. (2017). Gaze behavior during incidental and intentional navigation in an outdoor environment. Spatial Cognition & Computation, 17(1–2), 121–142. https://doi.org/10.1080/13875868.2016.1226838
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-3-319-24277-4
  • Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition & Computation, 9(2), 152–165. https://doi.org/10.1080/13875860902906496
  • Wilkening, J., & Fabrikant, S. I. (2011). How do decision time and realism affect map-based decision making? In M. Egenhofer, N. Giudice, R. Moratz & M. Worboys (Eds.), Spatial Information Theory (COSIT 2011) (Vol. 6899, pp. 1–19). Springer. https://doi.org/10.1007/978-3-642-23196-4_1
  • Willis, K. S., Hölscher, C., Wilbertz, G., & Li, C. (2009). A comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33(2), 100–110. https://doi.org/10.1016/j.compenvurbsys.2009.01.004
  • Winter, S., Raubal, M., & Nothegger, C. (2005). Focalizing measures of salience for wayfinding. In L. Meng, T. Reichenbacher & A. Zipf (Eds.), Map-based mobile services (pp. 125–139). Springer. https://doi.org/10.1007/3-540-26982-7_9
  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 0058. https://doi.org/10.1038/s41562-017-0058
  • Woollett, K., Spiers, H. J., & Maguire, E. A. (2009). Talent in the taxi: A model system for exploring expertise. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1522), 1407–1416. https://doi.org/10.1098/rstb.2008.0288
  • Wunderlich, A., & Gramann, K. (2021). Landmark-based navigation instructions improve incidental spatial knowledge acquisition in real-world environments. Journal of Environmental Psychology, 77, 101677. https://doi.org/10.1016/j.jenvp.2021.101677
  • Wunderlich, A., Grieger, S., & Gramann, K. (2022). Landmark information included in turn-by-turn instructions induce incidental acquisition of lasting route knowledge. Spatial Cognition & Computation, 23(1), 31–56. https://doi.org/10.1080/13875868.2021.2022681
  • Yesiltepe, D., Conroy Dalton, R., & Ozbil Torun, A. (2021). Landmarks in wayfinding: A review of the existing literature. Cognitive Processing, 22(3), 369–410. https://doi.org/10.1007/s10339-021-01012-x