Publication Cover
Corrosion Engineering, Science and Technology
The International Journal of Corrosion Processes and Corrosion Control
Volume 58, 2023 - Issue 8
123
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Topographical profiles and mechanical property of corrosion product films on a pipeline steel in Desulfovibrio vulgaris-containing thin electrolyte layer characterised by atomic force microscopy

, , , & ORCID Icon
Pages 775-786 | Received 28 Nov 2022, Accepted 07 Sep 2023, Published online: 19 Sep 2023

References

  • Alberta Energy Regulator (AER) Pipeline Performance. AER. Calgary, AB, Canada. 2021.
  • Pojtanabuntoeng T. Influence of water/hydrocarbons co-condensation on top of the line corrosion. [PhD thesis], Ohio University, US; 2012.
  • Qian S, Cheng YF. Corrosion of steel in a CO2-containing solution droplet generated in wet gas pipelines studied by scanning Kelvin probe. J Pipeline Sci Eng. 2022;2:71–77. doi:10.1016/j.jpse.2021.12.003
  • Rozi F, Mohebbi H, Ismail MC, et al. Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature. Corros Eng Sci Technol. 2018;53:444–448. doi:10.1080/1478422X.2018.1499169
  • Liu J, Jia M, Song C, et al. Controllable enhancement of mass transfer kinetics related with the thickness of organic thin-layer liquid membrane on surface of gas bubble. Chem Eng Process. 2022;172:108775, doi:10.1016/j.cep.2021.108775
  • Liu HW, Cheng YF. Mechanistic aspects of microbially influenced corrosion of X52 pipeline steel in a thin layer of soil solution containing sulphate-reducing bacteria under various gassing conditions. Corros Sci. 2018;133:178–189. doi:10.1016/j.corsci.2018.01.029
  • Yin K, Liu H, Cheng YF. Microbiologically influenced corrosion of X52 pipeline steel in thin layers of solution containing sulfate-reducing bacteria trapped under disbonded coating. Corros Sci. 2018;145:271–282. doi:10.1016/j.corsci.2018.10.012
  • Qian S, Cheng YF. Corrosion of X52 steel under thin layers of water condensate in wet gas pipelines. J Nat Gas Sci Eng. 2019;68:102921, doi:10.1016/j.jngse.2019.102921
  • Liu ZY, Hao WK, Wu W, et al. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer. Corros Sci. 2019;148:388–396. doi:10.1016/j.corsci.2018.12.029
  • Li JK, Liu ZY, Du CW, et al. Study on the corrosion behaviours of API X65 steel in wet gas environment containing CO2. Corros Eng Sci Techn. 2017;52:317–323. doi:10.1080/1478422X.2016.1278513
  • Zhu ZJ, Teevens PJ, Cheng YF. Numerical simulation and experimental verification of pitting corrosion propagation in sweet pipeline service. J Pipeline Sci Eng. 2022;2:78–86. doi:10.1016/j.jpse.2022.01.001
  • Fosbøl PL, Thomsen K, Stenby EH. Review and recommended thermodynamic properties of FeCO3. Corros Eng Sci Technol. 2010;45:115–135. doi:10.1179/174327808X286437
  • Li Q, Cheng YF. Modeling of corrosion of steel tubing in CO2 storage. Greenhouse Gases Sci Technol. 2016;6:797–811. doi:10.1002/ghg.1605
  • Zhang GA, Cheng YF. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water. Electrochim Acta. 2011;56:1676–1685. doi:10.1016/j.electacta.2010.10.059
  • Matamoros-Veloza A, Barker R, Vargas A, et al. Mechanistic insights of dissolution and mechanical breakdown of FeCO3corrosion films. ACS Appl Mater Interf. 2021;13:5741–5751. doi:10.1021/acsami.0c18976
  • Canadian Association of Petroleum Producers (CAPP). Mitigation of Internal Corrosion in Carbon Steel Gas Pipeline Systems. Calgary, AB, Canada: CAPP; Sept. 2018.
  • Yazdi M, Khan F, Abbassi R, et al. Resilience assessment of a subsea pipeline using dynamic Bayesian network. J Pipeline Sci Eng. 2022;2:100053, doi:10.1016/j.jpse.2022.100053
  • Khan F, Yarveisy R, Abbassi R. Risk-based pipeline integrity management: a road map for the resilient pipelines. J Pipeline Sci Eng. 2021;1:74–87. doi:10.1016/j.jpse.2021.02.001
  • Telegdi J, Shaban A, Trif L. Microbiologically influenced corrosion (MIC). Trends in oil and gas corrosion research and technologies. Woodhead Publishing Series in Energy. 2017: 191–214.
  • Ezenwa N, Khan F, Hawboldt K, et al. A preliminary molecular simulation study on the use of HS- as a parameter to assess the effect of surface deposits on the srb-initiated pitting on metal surfaces. Corrosion 2019, NACE, Nashville, Tennessee, US, 2019.
  • Wu TQ, Sun C, Xu J, et al. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment. Corros Eng Sci Technol. 2018;53:265–275. doi:10.1080/1478422X.2018.1456633
  • Tang HY, Yang C, Ueki T, et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. The ISME J. 2021;15:3084–3093. doi:10.1038/s41396-021-00990-2
  • Fatah MC, Ismail MC, Wahjoedi BA. Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC). Corros Eng Sci Technol. 2013;48:211–220. doi:10.1179/1743278212Y.0000000065
  • Liu HW, Cheng YF. Microbial corrosion of initial perforation on abandoned pipelines in wet soil containing sulfate-reducing bacteria. Colloids Surf B Biointerf. 2020;190:110899, doi:10.1016/j.colsurfb.2020.110899
  • Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection. Colloids Surf B Biointerf. 2021;202:111701, doi:10.1016/j.colsurfb.2021.111701
  • Li Z, Zhou J, Yuan X, et al. Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl Mater Interf. 2021;13:47272–47282. doi:10.1021/acsami.1c14746
  • Liu T, Cheng YF, Sharma M, et al. Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water. J Petro Sci Eng. 2017;156:451–459. doi:10.1016/j.petrol.2017.06.026
  • Li Y, Cheng YF. Photocatalytic anti-bioadhesion and bacterial deactivation on nanostructured iron oxide films. J Mater Chem B. 2018;6:1458–1469. doi:10.1039/C7TB03242K
  • Liu HW, Gu TY, Zhang GA, et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corros Sci. 2018;136:47–59. doi:10.1016/j.corsci.2018.02.038
  • Zhao XD, Duan JZ, Hou BR, et al. Corrosion of mild steel in sea mud containing sulphate reducing bacteria. Can Metall Q. 2014;53:450–454. doi:10.1179/1879139514Y.0000000132
  • Bich NN, Szklarz KE. Crossfield corrosion experience. Corrosion 88. Houston, TX, US,: NACE; 1988.
  • ASTM. Standard test methods for sulfate-reducing bacterial in water and water-formed deposits. D4412-19, West Conshohocken, PA, US, 2019.
  • ASTM. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken, PA, US, 2003.
  • Asmatulu R, Khan WS. Synthesis and applications of electrospun nanofibers. In: R Asmatulu, WS Khan, editors. Synthesis and Applications of Electrospun Nanofibers. Amsterdam: Elsevier; 2019. p. 257–281. doi:10.1016/B978-0-12-813914-1.00013-4.
  • Dufrêne YF, Martínez-Martín D, Medalsy I, et al. Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat Methods. 2013;10:847–854. doi:10.1038/nmeth.2602
  • Zhou EZ, Qiao DX, Yang Y, et al. A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. J Mater Sci Technol. 2020;46:201–210. doi:10.1016/j.jmst.2020.01.039
  • Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria. Corros Sci. 2013;66:88–96. doi:10.1016/j.corsci.2012.09.006
  • Xiang Y, Xu M, Choi YS. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models. Corros Eng Sci Technol. 2017;52:485–509. doi:10.1080/1478422X.2017.1304690
  • Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corros Sci. 2018;142:312–341. doi:10.1016/j.corsci.2018.07.021
  • Zhang GA, Cheng YF. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water. Electrochim Acta. 2011;56:1676–1685. doi:10.1016/j.electacta.2010.10.059
  • Keleştemur S, Çobandede Z, Çulha M. Biofilm formation of clinically important microorganisms on 2D and 3D poly (methyl methacrylate) substrates: a surface-enhanced Raman scattering study. Colloid Surface B. 2020;188:110765, doi:10.1016/j.colsurfb.2019.110765
  • Ahmad EA, Chang HY, Al-Kindi M, et al. Corrosion protection through naturally occurring films: new insights from iron carbonate. ACS Appl Mater Interf. 2019;11:33435–33441. doi:10.1021/acsami.9b10221
  • Zhang SD, Liu ZW, Wang ZM, et al. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass. Corros Sci. 2014;83:111–123. doi:10.1016/j.corsci.2014.02.005
  • Li Y, Qian S, Wei BX, et al. Effect of adding Y and Ce on corrosion behaviour of the extruded ZK60 magnesium alloy. Corros Eng Sci Technol. 2022;57:1–6. doi:10.1080/1478422X.2021.1976085
  • Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corros. Sci. 2018;142:312–341. doi:10.1016/j.corsci.2018.07.021
  • Asgari M, Barnoush A, Johnsen R, et al. Nanomechanical evaluation of the protectiveness of nitrided layers against hydrogen embrittlement. Corros Sci. 2012;62:51–60. doi:10.1016/j.corsci.2012.04.046
  • Al-Jaroudi SS, Ul-Hamid A, Al-Gahtani MM. Failure of crude oil pipeline due to microbiologically induced corrosion. Corros Eng Sci Technol. 2011;46:568–579. doi:10.1179/147842210X12695149033819
  • Wei BX, Xu J, Fu Q, et al. Effect of sulfate-reducing bacteria on corrosion of X80 pipeline steel under disbonded coating in a red soil solution. J Mater Sci Technol. 2021;87:1–17. doi:10.1016/j.jmst.2020.12.076
  • Dou WW, Liu JL, Cai WZ, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros. Sci. 2019;150:258–267. doi:10.1016/j.corsci.2019.02.005
  • Langumier M, Sabot R, Obame-Ndong R, et al. Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria. Corros Sci. 2009;51:2694–2702. doi:10.1016/j.corsci.2009.07.001
  • Fatah MC, Ismail M, Wahjoedi BA. Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: a study pertaining to microbiologically influenced corrosion (MIC). Corros Eng Sci Technol. 2013;48:211–220. doi:10.1179/1743278212Y.0000000065
  • Li L, Chen Z, Yuan Z, et al. Density functional theory and atomic force microscopy study of oleate functioned on siderite surface. Minerals. 2018;8:33, doi:10.3390/min8010033
  • Santos-Carballal D, Roldan A, Dzade NY, et al. Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4) and mackinawite (FeS). Philos. Trans. Royal Soc. A. 2018;2110:20170065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.