208
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Diffusion–reaction modelling of modulated hydrogen loading

, , &
Received 21 Dec 2023, Accepted 11 Mar 2024, Published online: 04 Apr 2024

References

  • C. Montella, Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials: Part I. influence of charge transfer kinetics and ohmic potential drop, J. Electroanalyt. Chem. 518 (2002), pp. 61–83.
  • J.W. Lee and S.I. Pyun, Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions, Electrochim. Acta 50 (2005), pp. 1777–1805.
  • A.J. Bard, L.R. Faulkner, and H.S. White, Electrochemical Methods: Fundamentals and Applications, 3rd ed., John Wiley & Sons, Hoboken, NJ, 2022.
  • R. Würschum, R. Weitenhüller, R. Enzinger, and W. Sprengel, Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration, Internat. J. Mater. Res. 113 (2022), pp. 683–692.
  • H. Brodowsky, Non-ideal solution behavior of hydrogen in metals, Ber. Bunsenges. Phys. Chem. 76 (1972), pp. 740–746.
  • H. Frieske and E. Wicke, Magnetic susceptibility and equilibrium diagram of PdHn, Ber. Bunsenges. Phys. Chem. 77 (1973), pp. 48–52.
  • T. Kuji, W. Oates, B. Bowerman, and T. Flanagan, The partial excess thermodynamic properties of hydrogen in palladium, J. Phys. F: Metal Phys. 13 (1983), pp. 1785.
  • C. Lemier and J. Weissmüller, Grain boundary segregation, stress and stretch: Effects on hydrogen absorption in nanocrystalline palladium, Acta Mater. 55 (2007), pp. 1241–1254.
  • H. Callen, Thermodynamics and An Introduction to Thermostatistics, Wiley, New York, 1985.
  • J. Chen, J.P. Diard, R. Durand, and C. Montella, Hydrogen insertion reaction with restricted diffusion. Part 1. potential step – EIS theory and review for the direct insertion mechanism, J. Electroanalyt. Chem. 406 (1996), pp. 1–13.
  • J. Crank, The Mathematics of Diffusion, 2nd ed., Oxford Science Publications, Oxford, 1979.
  • H. Brodowski, Das System Palladium/Wasserstoff, Zeitschrift für Physikalische Chemie Neue Folge 44 (1965), pp. 129–142.
  • C. Wagner, Contribution to the thermodynamics of interstitial solid solutions, Acta Metallurgica 19 (1971), pp. 843–849.
  • T.B. Flanagan and W. Oates, The palladium-hydrogen system, Annu. Rev. Mater. Sci. 21 (1991), pp. 269–304.
  • S.E. Li, B. Wang, H. Peng, and X. Hu, An electrochemistry-based impedance model for lithium-ion batteries, J. Power Sources 258 (2014), pp. 9–18.
  • J.C. Baker and J.W. Cahn, Thermodynamics of solidification, in Solidification, G.F. Hughel and T. J. Bolling, eds., ASM, Metals Park, OH, 1971, pp. 23–58.
  • M. Hillert, Solute drag, solute trapping and diffusional dissipation of Gibbs energy, Acta Mater. 47 (1999), pp. 4481–4505.
  • L. Darken, Diffusion of carbon in austenite with a discontinuity in composition, Trans. AIME 180 (1949), pp. 430–438.
  • R. Krishna, Diffusing uphill with James Clerk Maxwell and Josef Stefan, Curr. Opin. Chem. Eng. 12 (2016), pp. 106–119.
  • R. Würschum, Mean time of diffusion- and reaction-limited loading and unloading, Appl. Phys. A 129 (2023), pp. 535153–1 –53–9.
  • M.Z. Bazant, Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis, Faraday Discuss. 199 (2017), pp. 423–463.
  • M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, NJ, 2011.
  • A.C. Lazanas and M.I. Prodromidis, Electrochemical impedance spectroscopy – a tutorial, ACS Meas. Sci. Au 3 (2023), pp. 162–193.
  • S.I. Pyun, H.C. Shin, J.W. Lee, and J.Y. Go, Electrochemistry of Insertion Materials for Hydrogen and Lithium, Springer Science & Business Media, Berlin, 2012.
  • D.R. Franceschetti and J.R. Macdonald, Diffusion of neutral and charged species under small-signal ac conditions, J. Electroanalyt. Chem. Interfacial Electrochem. 101 (1979), pp. 307–316.
  • C. Ho, I. Raistrick, and R. Huggins, Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films, J. Electrochem. Soc. 127 (1980), pp. 343–350.
  • C. Lim and S.I. Pyun, Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode, Electrochim. Acta 38 (1993), pp. 2645–2652.
  • T.H. Yang and S.I. Pyun, Hydrogen absorption and diffusion into and in palladium: Ac-impedance analysis under impermeable boundary conditions, Electrochim. Acta 41 (1996), pp. 843–848.
  • C. Gabrielli, P. Grand, A. Lasia, and H. Perrot, Investigation of hydrogen adsorption-absorption into thin palladium films: I. theory, J. Electrochem. Soc. 151 (2004), pp. A1925–A1936.
  • J.P. Meyers, M. Doyle, R.M. Darling, and J. Newman, The impedance response of a porous electrode composed of intercalation particles, J. Electrochem. Soc. 147 (2000), pp. 2930–2940.
  • H. Carslaw and J. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford Science Publications, Oxford, 1986.
  • W. Schmickler and E. Santos, Interfacial Electrochemistry, Springer Science & Business Media, Berlin, 2010.
  • P. Drossbach and J. Schulz, Elektrochemische Untersuchungen an Kohleelektroden – I: Die Überspannung des Wasserstoffs, Electrochim. Acta 9 (1964), pp. 1391–1404.
  • S. Ding and W.T. Petuskey, Solutions to Fick's second law of diffusion with a sinusoidal excitation, Solid State Ion. 109 (1998), pp. 101–110.
  • J. Bisquert and A. Compte, Theory of the electrochemical impedance of anomalous diffusion, J. Electroanalyt. Chem. 499 (2001), pp. 112–120.
  • T. Jacobsen and K. West, Diffusion impedance in planar, cylindrical and spherical symmetry, Electrochim. Acta 40 (1995), pp. 255–262.
  • C. Gabrielli, P. Grand, A. Lasia, and H. Perrot, Investigation of hydrogen adsorption and absorption in palladium thin films: III. impedance spectroscopy, J. Electrochem. Soc. 151 (2004), Article ID A1943.
  • T.H. Yang and S.I. Pyun, An investigation of the hydrogen absorption reaction into, and the hydrogen evolution reaction from, a Pd foil electrode, J. Electroanal. Chem. 414 (1996), pp. 127–133.
  • B. Łosiewicz and A. Lasia, Study of the hydrogen absorption/diffusion in Pd80Rh20 alloy in acidic solution, J. Electroanal. Chem. 822 (2018), pp. 153–162.
  • J. Bisquert, Influence of the boundaries in the impedance of porous film electrodes, Phys. Chem. Chem. Phys. 2 (2000), pp. 4185–4192.
  • R. de Levie, On porous electrodes in electrolyte solutions. i. capacitance effects, Electrochim. Acta 8 (1963), pp. 751–780.
  • D.L. Cummings, R.L. Reuben, and D.A. Blackburn, The effect of pressure modulation on the flow of gas through a solid membrane: Permeation and diffusion of hydrogen through nickel, Metallurg. Trans. A 15 (1984), pp. 639–648.
  • D.L. Cummings and D.A. Blackburn, The effect of pressure modulation on the flow of gas through a solid membrane: Surface inhibition and internal traps, Metallurg. Trans. A 16 (1985), pp. 1013–1024.
  • A. Altunoglu and N. Braithwaite, The science and application of modulated permeation experiments, J. Alloys Comp. 231 (1995), pp. 302–306.
  • E.M. Steyskal, C. Wiednig, N. Enzinger, and R. Würschum, In situ characterization of hydrogen absorption in nanoporous palladium produced by dealloying, Beilstein J. Nanotechn. 7 (2016), pp. 1197–1201.
  • A. McNabb and P.K. Foster, A new analysis of the diffusion of hydrogen in ferritic steel, Trans. Metall. Soc. AIME 227 (1970), pp. 618–627.
  • R.A. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall. 18 (1970), pp. 147–157.
  • R. Würschum and A. Seeger, Diffusion–reaction model for the trapping of positrons in grain boundaries, Phil. Mag. A 73 (1996), pp. 1489–1501.
  • R. Würschum, L. Resch, and G. Klinser, Diffusion–reaction model for positron trapping and annihilation at spherical extended defects and in precipitate-matrix composites, Phys. Rev. B 97 (2018), pp. 22410822411224108–1 –224108–11.