130
Views
3
CrossRef citations to date
0
Altmetric
Articles

Le calcul mental en mathématiques : quels potentiels pour l'activité mathématique ?

Références

  • Anghileri, J. (dir.) (2001). Principles and practices in arithmetic teaching. Berkshire, Royaume-Uni: Open University Press.
  • Artigue, M. (1988). Ingénierie didactique. Recherche en didactique des mathématiques, 9(3), 281–308.
  • Assude, T., Boero, P., Herbst, P., Lerman, S. et Radford, L. (2008). The notions and roles of theory in mathematics education research. Proceedings of ICME-11. Monterrey, Mexique: ICMI.
  • Bachelard, G. (1938). La formation de l'esprit scientifique. Paris: J.Vrin.
  • Bass, H. (2003). Computational fluency, algorithms, and mathematical proficiency: One mathematician's perspective. Teaching Children Mathematics, 9(6), 322–327.
  • Batanero, C., Godino, J. D., Vallecillos, A., Green, D. R. et Holmes, P. (1994). Errors and difficulties in understanding elementary statistical concepts. International Journal of Mathematical Education in Science and Technology, 25(4), 527–547.
  • Boivin, D., Gendron, I. et Ledoux, A. (2006). Panoramath (1er cycle du secondaire). Montréal, Canada: Éditions CEC.
  • Boule, F. (2008). Le calcul mental au quotidien. Cycles 2 et 3. Dijon, France: SCÉREN, CRDP de Bourgogne.
  • Butlen, D. et Pézard, M. (1992). Calcul mental et résolution de problèmes multiplicatifs, une expérimentation du CP en CM2. Recherches en didactique des mathématiques, 12(2-3), 319–368.
  • Butlen, D. et Pézard, M. (2000). Conceptualisation en mathématiques et élèves en difficulté. Grand N, 71, 7–32.
  • Coupal, M. (2005). À vos maths ! (1er cycle du secondaire). Montréal, Canada: Chenelière éducation.
  • De Lange, J. (2015). There is, probably no need for this presentation. Dans A. Watson et M. Ohtani (dir.), Task design in mathematics education (p. 287–308). Suisse: Springer.
  • Delmas, R. et Liu, Y. (2005). Exploring students' conception of the standard deviation. Statistics Education Research Journal, 4(1), 55–82.
  • Douady, R. (1994). Ingénierie didactique et évolution du rapport au savoir. Repères IREM N° 15, 25 pages.
  • Garfield, J. et Ahlgren, A. (1988). Difficulties in learning basic concepts in probability and statistics: Implications for research. Journal for Research in Mathematics Education, 19(1), 44–63.
  • Gattuso, L. (1997). La moyenne, un concept évident ? Bulletin AMQ, 37(3), 10–19.
  • Gattuso, L. (1999). La moyenne: Un concept inexploité, d'une richesse exceptionnelle. Repères-IREM, 34, 79–93.
  • Groth, R. et Bergner, J. (2006). Preservice elementary teachers' conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37–63.
  • Hazekamp, D. W. (1986). Components of mental multiplying. Dans H. L. Schoen et M. J. Zweng (dir.), Estimation and mental computation. 1986 NCTM Yearbook (p. 116–126). Reston, VA: NCTM.
  • Heirdsfield, A. M. et Cooper, T. J. (2004). Factors affecting the process of proficient mental addition and subtraction: Case studies of flexible and inflexible computers. Journal of Mathematical Behavior, 23(4), 443–463.
  • Jacobbe, T. (2012). Elementary school teachers' understanding of the mean and median. International Journal of Science and Mathematics Education, 10, 1143–1161.
  • Jardine, D. W. (1994). The fecundity of the individual case: Considerations of the pedagogic heart of interpretive work. Journal of Philosophy of Education, 26(1), 51–61.
  • Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? Dans A. H. Schoenfeld (dir.), Cognitive science and mathematics education (p. 123–147). Hillsdale, NJ: Erlbaum.
  • Lajoie, C. et Saboya, M. (2013). La recherche en didactique mise à profit dans la formation à l'enseignement des mathématiques: Le cas du cours « Raisonnement proportionnel et concepts associés » à l'Université du Québec à Montréal. Revue canadienne de l'enseignement des sciences, des mathématiques et des technologies, 13(1), 49–69.
  • Lappan, G. et Zawojewski, J. (1988). Teaching statistics: Mean, median, and mode. Arithmetic Teacher, March 88, 25–26.
  • Maheux, J.-F. et Proulx, J. (2014). Vers le faire mathématique: Essai pour un nouveau positionnement en didactique des mathématiques. Annales de didactique et de sciences cognitives, 19, 17–52.
  • Maheux, J.-F. et Proulx, J. (2015). Doing|mathematics: Analysing data with/in an enactivist-inspired approach. ZDM – The International Journal on Mathematics Education, 47(2), 211–221.
  • Mary, C. et Gattuso, L. (2005). Trois problèmes semblables de moyenne pas si semblables que ça ! L'influence de la structure d'un problème sur les réponses des élèves. Statistics Education Research Journal, 4(2), 82–102.
  • Mason, J., Burton, L. et Stacey, K. (1982). Thinking mathematically. Londres: Addison-Wesley.
  • Mason, J. et Waywood, A. (1996). The role of theory in mathematics education and research. Dans A. Bishop, K. Clements, C. Keitel, J. Kilpatrick et C. Laborde (dir.), International Handbook of Mathematics Education (p. 1055–1089). Dortrecht, Pays-Bas: Kluwer.
  • Maturana, H. R. (1987). Everything is said by an observer. Dans W. I. Thompson (dir.) GAIA: A way of knowing (p. 65–82). Hudson, NY: Lindisfarne Press.
  • Maturana, H. R. (1988). Reality: The search for objectivity of the quest for a compelling argument. Irish Journal of Psychology, 9(1), 25–82.
  • Maturana, H. R. et Varela, F. J. (1992). The tree of knowledge: The biological roots of human understanding ( éd. révisée). Boston, MA: Shambhala.
  • Mayén, S. et Diaz, C. (2010). Is median an easy concept? Semiotic analysis of an openended task. Dans C. Reading (dir.), Proceedings of the Eighth International Conference on Teaching Statistics (Ljubljana, Slovenia). Voorburg, the Netherlands: International Statistical Institute. Récupéré à http://icots.info/8/cd/pdfs/contributed/ICOTS8_C265_MAYEN.pdf
  • Mokros, J. et Russell, S. (1995). Children's concepts of average and representativeness. Journal for Research in Mathematics Education, 26(1), 20–39.
  • Murphy, C. (2004). How do children come to use a taught mental calculation strategy? Educational Studies in Mathematics, 56(1), 3–18.
  • Nemirovsky, R. et Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educational Studies in Mathematics, 70(2), 159–174.
  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249–262.
  • Piaget, J. (1937). La construction du réel chez l'enfant. Neuchâtel, Switzerland: Delachaux et Niestlé.
  • Plunkett, S. (1979). Decomposition and all that rot. Mathematics in Schools, 8(3), 2–5.
  • Proulx, J. (2013a). Mental mathematics, emergence of strategies, and the enactivist theory of cognition. Educational Studies in Mathematics, 84(3), 309–328.
  • Proulx, J. (2013b). Le calcul mental au-delà des nombres: conceptualisations et illustrations avec la résolution d'équations algébriques. Annales de didactique et de sciences Cognitives, 18, 61–90.
  • Proulx, J. (2015a). Mental mathematics with mathematical objects other than numbers: The case of operation on functions. Journal of Mathematical Behavior, 39, 156–176.
  • Proulx, J. (2015b). Mental mathematics and enactment of specific strategies: The case of systems of linear equations. Proceedings of PME-NA 37. East Lansing, MI: PME-NA.
  • Proulx, J., Lavallée-Lamarche, M.-L. et Tremblay, K.-P. (2017). Équations algébriques et activité mathématique en calcul mental: regard sur les défis d'enseignement. Annales de didactique et de sciences cognitives, 22, 43–65.
  • Roth Leon, M. et Zawojewski, J. (1990). Use of the arithmetic mean: An investigation of four properties issues and preliminary results. Icots-3, 302–306.
  • Thompson, I. (2000). Understanding and assessing children mathematical understanding through mental calculations. Communication présentée à ICME-9, Tokyo, Japon.
  • Thompson, I. (2009). Mental calculation. Mathematics Teaching, 213, 40–42.
  • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of speed. Dans G. Harel et G. Confrey (dir.), The development of multiplicative reasoning in the learning of mathematics (p. 179–234). New York: SUNY Press.
  • Threlfall, J. (2002). Flexible mental calculations. Educational Studies in Mathematics, 50(1), 29–47.
  • Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM, 41(5), 541–555.
  • Varela, F. J., Thompson, E. et Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.
  • Vermette, S. (2013). Le concept de variabilité chez des enseignants de mathématiques au secondaire (thèse de doctorat, Université de Sherbrooke, Canada).
  • Vermette, S. (2017). Enseignants de mathématiques et connaissances statistiques: le cas de la variabilité. Revue canadienne de l'enseignement des sciences, des mathématiques et des technologies / Canadian Journal of Science, Mathematics and Technology Education, 17(3), 219–233.
  • Wasserman, N. H. (2015). Unpacking teachers' moves in the classroom: Navigating micro- and macro-levels of mathematical complexity. Educational Studies in Mathematics, 90(1), 75–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.