47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Silica nanoparticles as a waste product to alleviate the harmful effects of water stress in wheat

ORCID Icon, &

References

  • Ahluwalia O, Singh PC, Bhatia R. 2021. A review on drought stress in plants: implications, mitigation and the role of plant growth promoting rhizobacteria. Resour Environ Sustain. 5:100032. doi: 10.1016/j.resenv.2021.100032.
  • Ahsan M, Valipour M, Nawaz F, Raheel M, Abbas HT, Sajid M, Manan A, Kanwal S, Mahmoud EA, Casini R, et al. 2023. Evaluation of silicon supplementation for drought stress under water-deficit conditions: an application of sustainable agriculture. Agronomy. 13(2):599. doi: 10.3390/agronomy13020599.
  • Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. 2021. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv Mater. 33(28):e2001085. doi: 10.1002/adma.202001085.
  • Al-Addous M, Bdour M, Alnaief M, Rabaiah S, Schweimanns N. 2023. Water resources in Jordan: a review of current challenges and future opportunities. Water. 15(21):3729. doi: 10.3390/w15213729.
  • Al-Ghzawi A, Khalaf Y, Al-Ajlouni Z, Al-Quraan N, Musallam I, Hani N. 2018. The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture. 8(5):67. doi: 10.3390/agriculture8050067.
  • Ali O, Cheddadi I, Landrein B, Long Y. 2023. Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 238(1):62–69. doi: 10.1111/nph.18683.
  • Aliyari Rad S, Nobaharan K, Pashapoor N, Pandey J, Dehghanian Z, Senapathi V, Minkina T, Ren W, Rajput VD, Asgari Lajayer B, et al. 2023. Nano-microbial remediation of polluted soil: a brief insight. Sustainability. 15(1):876. doi: 10.3390/su15010876.
  • Aljarrah MT, Al-Harahsheh MS, Mayyas M, Alrebaki M. 2018. In situ synthesis of quaternary ammonium on silica-coated magnetic nanoparticles and it’s application for the removal of uranium (VI) from aqueous media. J Environ Chem Eng. 6(5):5662–5669. doi: 10.1016/j.jece.2018.08.070.
  • Al-Kharabsheh A. 2020. Challenges to sustainable water management in Jordan. Jordan J Earth Environ Sci. 11(1):38–48.
  • Al-Khayri JM, Rashmi R, Surya Ulhas R, Sudheer WN, Banadka A, Nagella P, Aldaej MI, Rezk AA-S, Shehata WF, Almaghasla MI, et al. 2023. The role of nanoparticles in response of plants to abiotic stress at physiological, biochemical, and molecular levels. Plants. 12(2):292. doi: 10.3390/plants12020292.
  • Al-Mayta R, Abdel-Ghani AH, Al-Dalain SA, Duwayri MA. 2023. Effect of supplemental irrigation on wheat performance grown in semi-arid environment. Jordan J Agr Sci. 19(2):105–124. doi: 10.35516/jjas.v19i2.1425.
  • Al-Mousa EM, Al-Zboon KK. 2022. Recycling of nano silica waste from aluminum fluoride industry in cement mortar. J Solid Waste Technol Manag. 48(3):459–464. doi: 10.5276/JSWTM/2022.459.
  • Alnsour MA, Ijam AZ. 2023. Specifying a cascade water demand forecasting model using time-series analysis: a case of Jordan. Sustain Water Resour Manag. 9(1):37. doi: 10.1007/s40899-023-00824-3.
  • Alqadi M, Al Dwairi A, Merchán-Rivera P, Chiogna G. 2023. Presentation of DeMa (decision support software and database for wellfield management) and its application for the Wadi Al Arab wellfield. Water. 15(2):331. doi: 10.3390/w15020331.
  • Al-Saeedi A. 2020. Contribution of nano-silica in affecting some of the physico-chemical properties of cultivated soil with the common bean (Phaseolus vulgaris). J Adv Agric Res. 25(4):389–400. doi: 10.21608/jalexu.2020.189536.
  • Al-Shahmani AMK, Al-Juthery HWA. 2022. Evaluation of Si fertilization and spraying of nano-K and Ca on Si content, Si uptake, and Si use efficiency of rice. IOP Conf Ser Earth Environ Sci. 1060(1):012042. doi: 10.1088/1755-1315/1060/1/012042.
  • Al-Tabbal J. 2016. Variability, heritability, phenotypic and genotypic correlations and path coefficients of some agronomic characters in glaucous lines from a “Safra Ma’an” wheat landrace population. Philipp Agric Scientist. 99:142–149.
  • Al-Tabbal J, Al-Harahsheh M, Al-Zou’by J, Al‑Zboon K, Al-Bakour Al-Rawashda K. 2023a. Silica nanoparticle: eco-friendly waste having potential for seed germination of wheat (Triticum turgidum L. Var. Sham) under salt stress conditions. Waste Biomass Valor. doi: 10.1007/s12649-023-02338-7.
  • Al-Tabbal J, Al-Jedaih M, Al-Zboon KK, Alrawashdeh KAB. 2023b. Mitigation of salinity stress effects on kochia (Bassia scoparia L.) biomass productivity using biochar application. Int J Phytoremediation. 25(11):1463–1473. doi: 10.1080/15226514.2022.2164248.
  • Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M, Samiei L. 2022. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biol. 22(1):364. doi: 10.1186/s12870-022-03689-4.
  • Aviram R, Hindi A, Abu Hammour S. 2020. Coping with water scarcity in the Jordan River Basin. https://tcf.org/content/report/coping-water-scarcity-jordan-river-basin/.
  • Bar‐Yosef B, Akiri B. 1978. Sodium bicarbonate extraction to estimate nitrogen, phosphorus, and potassium availability in soils. Soil Sci Soc Am J. 42(2):319–323. doi: 10.2136/sssaj1978.03615995004200020024x.
  • Basilio-Apolinar A, Vara LEG-dl, Ramírez-Pimentel JG, Aguirre-Mancilla CL, Iturriaga G, Covarrubias-Prieto J, Raya-Pérez JC. 2021. Silicon induces changes in the antioxidant system of millet cultivated in drought and salinity. Chil J Agric Res. 81(4):655–663. doi: 10.4067/S0718-58392021000400655.
  • Bates L, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39(1):205–207. doi: 10.1007/BF00018060.
  • Bazrgar G, Nabavi Kalat SM, Khorasani SK, Ghasemi M, Kelidari A. 2023. Effect of deficit irrigation on physiological, biochemical, and yield characteristics in three baby corn cultivars (Zea mays L.). Heliyon. 9(4):e15477. doi: 10.1016/j.heliyon.2023.e15477.
  • Becerra-Agudelo E, López JE, Betancur-García H, Carbal-Guerra J, Torres-Hernández M, Saldarriaga JF. 2022. Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon. 8(8):e10221. doi: 10.1016/j.heliyon.2022.e10221.
  • Chen S, Guo X, Zhang B, Nie D, Rao W, Zhang D, Lü J, Guan X, Chen Z, Pan X, et al. 2023. Mesoporous silica nanoparticles induce intracellular peroxidation damage of Phytophthora infestans: a new type of green fungicide for late blight control. Environ Sci Technol. 57(9):3980–3989. doi: 10.1021/acs.est.2c07182.
  • Cotrina Cabello GG, Ruiz Rodriguez A, Husnain Gondal A, Areche FO, Flores DDC, Astete JAQ, Camayo-Lapa BF, Yapias RJM, Jabbar A, Yovera Saldarriaga J, et al. 2023. Plant adaptability to climate change and drought stress for crop growth and production. CABI Rev. doi: 10.1079/cabireviews.2023.0004.
  • David DJ. 1960. The determination of exchangeable sodium, potassium, calcium and magnesium in soils by atomic-absorption spectrophotometry. Analyst. 85(1012):495. doi: 10.1039/an9608500495.
  • Deka B, Babu A, Baruah C, Barthakur M. 2021. Nanopesticides: a systematic review of their prospects with special reference to tea pest management. Front Nutr. 8:686131. doi: 10.3389/fnut.2021.686131.
  • Dilnawaz F, Kalaji MH, Misra AN. 2023. Nanotechnology in improving photosynthesis under adverse climatic conditions: cell to canopy action. Plant Nano Biol. 4:100035. doi: 10.1016/j.plana.2023.100035.
  • Dolschak K, Gartner K, Berger TW. 2019. The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica L.) stands. Model Earth Syst Environ. 5(4):1347–1363. doi: 10.1007/s40808-019-00602-1.
  • El-Ramady H, Brevik EC, Fawzy ZF, Elsakhawy T, Omara AE-D, Amer M, Faizy SE-D, Abowaly M, El-Henawy A, Kiss A, et al. 2022. Nano-restoration for sustaining soil fertility: a pictorial and diagrammatic review article. Plants. 11(18):2392. doi: 10.3390/plants11182392.
  • El-Saadony MT, Saad AM, Soliman SM, Salem HM, Desoky E-SM, Babalghith AO, El-Tahan AM, Ibrahim OM, Ebrahim AAM, Abd El-Mageed TA, et al. 2022. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Front Plant Sci. 13:946717. doi: 10.3389/fpls.2022.946717.
  • El-Shawa GMR, Alharbi K, AlKahtani M, AlHusnain L, Attia KA, Abdelaal K. 2022. Improving the quality and production of philodendron plants using nanoparticles and humic acid. Horticulturae. 8(8):678. doi: 10.3390/horticulturae8080678.
  • Fishman R, Giné X, Jacoby HG. 2023. Efficient irrigation and water conservation: evidence from South India. J Dev Econ. 162:103051. doi: 10.1016/j.jdeveco.2023.103051.
  • Gumbara RH, Darmawan, Sumawinata B. 2019. A comparison of cation exchange capacity of organic soils determined by ammonium acetate solutions buffered at some pHs ranging between around field pH and 7.0. IOP Conf Ser Earth Environ Sci. 393(1):012015. doi: 10.1088/1755-1315/393/1/012015.
  • Hafez EM, Osman HS, Gowayed SM, Okasha SA, Omara AE-D, Sami R, Abd El-Monem AM, Abd El-Razek UA. 2021. Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy. 11(4):676. doi: 10.3390/agronomy11040676.
  • Hamad HT, Al-Sharify ZT, Al-Najjar SZ, Gadooa ZA. 2020. A review on nanotechnology and its applications on Fluid Flow in agriculture and water recourses. IOP Conf Ser Mater Sci Eng. 870(1):012038. doi: 10.1088/1757-899X/870/1/012038.
  • Hatti V, Raghavendra M, Singh YV, Sharma SK, Halli HM, Goud BR. 2020. Application of nano technology in crop production to enhance resource use efficiency with special reference to soil and water conservation: a review. J Soil Water Conserv. 19(4):375–381. doi: 10.5958/2455-7145.2020.00050.8.
  • He L, Rosa L. 2023. Solutions to agricultural green water scarcity under climate change. PNAS Nexus. 2(4):pgad117. doi: 10.1093/pnasnexus/pgad117.
  • Irigoyen JJ, Einerich DW, Sánchez‐Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant. 84(1):55–60. doi: 10.1111/j.1399-3054.1992.tb08764.x.
  • Jaafar H, Ahmad F, Holtmeier L, King-Okumu C. 2020. Refugees, water balance, and water stress: lessons learned from Lebanon. Ambio. 49(6):1179–1193. doi: 10.1007/s13280-019-01272-0.
  • Jiang W, Zhang J, Jia Z-H, Zhang T, Zhang W-J, Wei M. 2023. Physiological and nutrient responses to nitrogen, phosphorus, or potassium deficiency of hydroponically grown strawberry. Horts. 58(6):628–634. doi: 10.21273/HORTSCI17086-23.
  • Jones J. 1991. Kjeldahl method for nitrogen determination. Athens, GA: Micro-Macro Publishing, Inc.
  • Kala S, Godara A. 2011. Effect of moisture stress on leaf total proteins, proline and free amino acid content in commercial cultivars of Ziziphus mauritiana. J Sci Res. 55:65–69.
  • Kalteh M, Alipour ZT, Ashraf- S, Marashi AM, Falah NA. 2014. Effect of silica nanoparticles on basil Ocimum basilicum under salinity stress. J Chem Health Risks. 4(3):49–55.
  • Kargas G, Londra P, Sgoubopoulou A. 2020. Comparison of soil EC values from methods based on 1:1 and 1:5 soil to water ratios and ECe from saturated paste extract based method. Water. 12(4):1010. doi: 10.3390/w12041010.
  • Khodabandeh MA, Nagy G, Török Á. 2023. Stabilization of collapsible soils with nanomaterials, fibers, polymers, industrial waste, and microbes: current trends. Constr Build Mater. 368:130463. doi: 10.1016/j.conbuildmat.2023.130463.
  • Kondolf M, Yi J. 2022. Dam renovation to prolong reservoir life and mitigate dam impacts. Water. 14(9):1464. doi: 10.3390/w14091464.
  • Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A. 2022. Potential applications of engineered nanoparticles in plant disease management: a critical update. Chemosphere. 295:133798. doi: 10.1016/j.chemosphere.2022.133798.
  • Li Y, Xi K, Liu X, Han S, Han X, Li G, Yang L, Ma D, Fang Z, Gong S, et al. 2023. Silica nanoparticles promote wheat growth by mediating hormones and sugar metabolism. J Nanobiotechnol. 21(1):2. doi: 10.1186/s12951-022-01753-7.
  • Luo Q, Xie H, Chen Z, Ma Y, Yang H, Yang B, Ma Y. 2023. Morphology, photosynthetic physiology and biochemistry of nine herbaceous plants under water stress. Front. Plant. Sci. 14:1147208. doi: 10.3389/fpls.2023.1147208.
  • Markovich O, Steiner E, Kouřil Š, Tarkowski P, Aharoni A, Elbaum R. 2017. Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant Cell Environ. 40(7):1189–1196. doi: 10.1111/pce.12913.
  • Mason JL. 1963. Flame photometric determination of potassium in unashed plant leaves. Anal Chem. 35(7):874–875. doi: 10.1021/ac60200a032.
  • Mohammad ZH, Ahmad F, Ibrahim SA, Zaidi S. 2022. Application of nanotechnology in different aspects of the food industry. Discov Food. 2(1):12. doi: 10.1007/s44187-022-00013-9.
  • Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. 2023. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass (Cymbopogon flexuosus) under salt stress. Front Plant Sci. 14:1116769. doi: 10.3389/fpls.2023.1116769.
  • Nasution H, Harahap H, Dalimunthe NF, Ginting MHS, Jaafar M, Tan OOH, Aruan HK, Herfananda AL. 2022. Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: a review. Gels. 8(9):568. doi: 10.3390/gels8090568.
  • Patra SK, Poddar R, Brestic M, Acharjee PU, Bhattacharya P, Sengupta S, Pal P, Bam N, Biswas B, Barek V, et al. 2022. Prospects of hydrogels in agriculture for enhancing crop and water productivity under water deficit condition. Int J Polym Sci. 2022:1–15. doi: 10.1155/2022/4914836.
  • Qayyum A, Al Ayoubi S, Sher A, Bibi Y, Ahmad S, Shen Z, Jenks MA. 2021. Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange. Saudi J Biol Sci. 28(9):5238–5249. doi: 10.1016/j.sjbs.2021.05.040.
  • Rady MM, Belal HEE, Gadallah FM, Semida WM. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci Hortic. 266:109290. doi: 10.1016/j.scienta.2020.109290.
  • Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, et al. 2022. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: a review. Front Plant Sci. 13:976179. doi: 10.3389/fpls.2022.976179.
  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M. 2019. Application of silicon nanoparticles in agriculture. 3 Biotech. 9:1–1. doi: 10.1007/s13205-019-1626-7.
  • Raza A, Charagh S, Abbas S, Hassan MU, Saeed F, Haider S, Sharif R, Anand A, Corpas FJ, Jin W, et al. 2023. Assessment of proline function in higher plants under extreme temperatures. Plant Biol. 25(3):379–395. doi: 10.1111/plb.13510.
  • SAS Institute. 2014. SAS 9.4 output delivery system.
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants. 10(2):259. doi: 10.3390/plants10020259.
  • Sharma R, Kumar V. 2024. Nano enabled agriculture for sustainable soil. Waste Manag Bull. 2(1):152–161. doi: 10.1016/j.wmb.2024.01.002.
  • Shen M, Liu S, Jiang C, Zhang T, Chen W. 2023. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco Environ Health. 2(3):161–175. doi: 10.1016/j.eehl.2023.07.005.
  • Siddiqui H, Ahmed KBM, Sami F, Hayat S. 2020. Silicon nanoparticles and plants: current knowledge and future perspectives. In: Sustainable agriculture reviews; p. 129–142. Springer.
  • Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM. 2016. Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere. 152:81–91. doi: 10.1016/j.chemosphere.2016.02.096.
  • Sutulienė R, Ragelienė L, Samuolienė G, Brazaitytė A, Urbutis M, Miliauskienė J. 2021. The response of antioxidant system of drought-stressed green pea (Pisum sativum L.) affected by watering and foliar spray with silica nanoparticles. Horticulturae. 8(1):35. doi: 10.3390/horticulturae8010035.
  • Tortella G, Rubilar O, Pieretti JC, Fincheira P, de Melo Santana B, Fernández-Baldo MA, Benavides-Mendoza A, Seabra AB. 2023. Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics. 12(2):338. doi: 10.3390/antibiotics12020338.
  • Tzanakakis VA, Paranychianakis NV, Angelakis AN. 2020. Water supply and water scarcity. Water. 12(9):2347. doi: 10.3390/w12092347.
  • Velasco-Muñoz, Aznar-Sánchez, Batlles-delaFuente, Fidelibus. 2019. Rainwater harvesting for agricultural irrigation: an analysis of global research. Water. 11(7):1320. doi: 10.3390/w11071320.
  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants. 11(13):1620. doi: 10.3390/plants11131620.
  • Wang L, Ning C, Pan T, Cai K. 2022. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: a review. Int J Mol Sci. 23(4):1947. doi: 10.3390/ijms23041947.
  • Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S. 2021. Functions of silicon in plant drought stress responses. Hortic Res. 8(1):254. doi: 10.1038/s41438-021-00681-1.
  • Wang X, Xie H, Wang P, Yin H. 2023. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials. 16(8):3097. doi: 10.3390/ma16083097.
  • Yadav A, Yadav K, Abd-Elsalam KA. 2023a. Nanofertilizers: types, delivery and advantages in agricultural sustainability. Agrochemicals. 2(2):296–336. doi: 10.3390/agrochemicals2020019.
  • Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. 2023b. Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects. Agrochemicals. 2(2):220–256. doi: 10.3390/agrochemicals2020016.
  • Yang P, Wu L, Cheng M, Fan J, Li S, Wang H, Qian L. 2023. Review on drip irrigation: impact on crop yield, quality, and water productivity in China. Water. 15(9):1733. doi: 10.3390/w15091733.
  • Yavaş İ. 2021. The effect of nanoparticle applications on plants under some stress conditions. Turk J Range Forage Sci. 2(2):52–62. doi: 10.51801/turkjrfs.954843.
  • Yoon J, Klassert C, Selby P, Lachaut T, Knox S, Avisse N, Harou J, Tilmant A, Klauer B, Mustafa D, et al. 2021. A coupled human–natural system analysis of freshwater security under climate and population change. Proc Natl Acad Sci USA. 118(14): 1–14. doi: 10.1073/pnas.2020431118.
  • Zaib M, Raza I, Zubair M, Arif Z, Mumtaz MM, Abbas MQ, Javed A, Salman S, Sikandar A, Kashif M, Muneeb M. 2023. Nano-enabled soil amendments for improved soil structure and water holding capacity: an in-depth review. Int Res J Educ Technol. 5:344–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.