397
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A physiologically based pharmacokinetic model for the broad-spectrum antimicrobial zinc pyrithione: I. Development and verification

, , &
Pages 69-90 | Received 14 May 2016, Accepted 27 Sep 2016, Published online: 13 Jan 2017

References

  • Adams, M., Wedig, J. H., and Jordan, R. 1975. Excretion and metabolism of three [2-6-14C]omadines following intravenous injection in female Yorkshire pigs. Toxicol. Appl. Pharmacol. 33: 180.
  • Bailey, P., Arrowsmith, C., Darling, K., Dexter, J., Eklund, J., Lane, A., Little, C., Murray, B., Scott, A., Williams, A., and Wilson, D. 2003. A double-blind randomized vehicle-controlled clinical trial investigating the effect of ZnPTO dose on the scalp vs. antidandruff efficacy and antimycotic activity. Int. J. Cosmet. Sci. 25: 183–188.
  • Black, J. G., and Howes, D. 1978. Toxicity of pyrithiones. Clin. Toxicol. 13: 1–26.
  • Chandler, C. J., and Segel, I. H. 1978. Mechanism of the antimicrobial action of pyrithione: Effects on membrane transport, ATP levels, and protein synthesis. Antimicrob. Agents Chemother. 14: 60–68.
  • Charnick, S. B., Kawai, R., Nedelman, J. R., Lemaire, M., Niederberger, W., and Sato, H. 1995. Physiologically based pharmacokinetic modeling as a tool for drug development. J. Pharmacokinet. Biopharm. 23: 217–229.
  • Chiu, W. A., Barton, H. A., DeWoskin, R. S., Schlosser, P., Thompson, C. M., Sonawane, B., Lipscomb, J. C., and Krishnan, K. 2007. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J. Appl. Toxicol. 27: 218–237.
  • Clewell, H. J. III, Gentry, P. R., and Gearhart, J. M. 1997. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. J. Toxicol. Environ. Health 52: 475–515.
  • Clewell, H. J., Andersen, M. E., and Barton, H. A. 2002. A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment. Environ. Health Perspect. 110: 95–93.
  • DeWoskin, R. S., Sweeney, L. M., Teeguarden, J. G., Sams, R., and Vandenberg, J. 2013. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. Food Chem. Toxicol. 58: 506–521.
  • Dinning, A. J., Al Adham, I. S. I., Austin, P., and Collier, P. J. 1998. A novel assay for the distribution of pyrithione biocides in bacterial cells. Lett. Appl. Microbiol. 27: 1–4.
  • Doose, C.A., Ranke, J., Stock, F., Bottin-Weber, U., and Jastorff, B. 2004. Structure–activity relationships of pyrithiones—IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem. 6: 259–266.
  • Durkin, P., Hertzberg, R., and Diamond, G. 2004. Application of PBPK model for 2,4-D to estimates of risk in backpack applicators. Environ. Toxicol. Pharmacol. 16: 73–91.
  • Fischer, P., Hansen, K., and Breuer, D. 2003. Measurement of biocides in metalworking fluids and in workplace air using capillary electrophoresis. Appl. Occup. Environ. Hyg. 18: 226–231.
  • Gibson, W. B., Jeffcoat, A. R., and Turan, T. S. 1982. Zinc pyridinethione: Serum metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 62: 237–250.
  • Guthery, E., Seal, L. A., and Anderson, E. L. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: Persistence of antimicrobial effects. Am. J. Infect. Control 33: 15–22.
  • ILSI. 1994. Physiological parameter values for PBPK models. Report prepared by the ILSI Risk Science Institute Working Group on Physiological Parameters. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100K030.txt
  • Imokawa, G., Shimizua, H., and Okamoto, K. 1982. Antimicrobial effect of zinc pyrithione. J. Soc. Cosmet. Chem. 33: 27–37.
  • Imokawa, G., and Okamoto, K. 1983. The effect of zinc pyrithione on human skin cells in vitro. J. Soc. Cosmet. Chem. 34: 1–11.
  • IPCS. 2010. Characterization and application of physiologically based pharmacokinetic models in risk assessment, 1–97. Harmonization Project Document No. 9. Geneva, Switzerland: World Health Organization.
  • Irwin, S. 1968. Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiological state of the mouse. Psychopharmacologia 13: 222–257.
  • Jeffcoat, A. R., Gibson, W. B., Rodriguez, P. A., Turan, T. S., Hughes, P. F., and Twine, M. E. 1980. Zinc pyridinethione: Urinary metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 56: 141–154.
  • Kabacoff, B. L., Fairchild, C. M., and Burnett, C. 1971. Pyridinethione glucuronide as a metabolite of sodium pyridinethione. Food Cosmet. Toxicol. 9: 519–526.
  • Klaassen, C. D. 1976. Absorption, distribution, and excretion of zinc pyridinethione in rabbits. Toxicol. Appl. Pharmacol. 35: 581–587.
  • Knaak, J. B., Dary, C. C., Power, F., Thompson, C. B., and Blancato, J. N. 2004. Physicochemical and biological data for the development of predictive organophosphorus pesticide QSARs and PBPK/PD models for human risk assessment. Crit. Rev. Toxicol. 34: 143–207.
  • Krishnan, K., and Johanson, G. 2005. Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment. J. Environ. Sci. Health C Environ. Carcinogen. Ecotoxicol. Rev. 23: 31–53.
  • Larson, P. S. 1958. Toxicologic observations on the effect of adding Zn-pyridinethione to the diet of rats for a period of two years, 1–15. Report to Olin Corporation.
  • LoPachin, R. M., Lehning, E. J., Opanashuk, L. A., and Jortner, B. S. 2000. Rate of neurotoxicant exposure determines morphologic manifestations of distal axonopathy. Toxicol. Appl. Pharmacol. 167: 75–86.
  • Mitoma, C. Steeger, T., Rogers, J., Thomas, D., and Wedig, J. H. 1983. Metabolic disposition of pyrthiones. Fundam. Appl. Toxicol. 3: 256–263.
  • O’Flaherty, E. J., Scott, W., Schreiner, C., and Beliles, R. P. 1992. A physiologically based kinetic model of rat and mouse gestation: Disposition of a weak acid. Toxicol. Appl. Pharmacol. 112: 245–256.
  • Ross, J. F., and Lawhorn, G. T. 1990. ZPT-related distal axonopathy: Behavioral and electrophysiologic correlates in rats. Neurotoxicol. Teratol. 12: 153–159.
  • Sahenk, Z., and Mendell, J. R. 1979. Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy. J. Neuropathol. Exp. Neurol. 38: 532–550.
  • Sahenk, Z., and Mendell, J. R. 1980. Axoplasmic transport in zinc pyridinethione neuropathy: Evidence for an abnormality in distal turn-around. Brain Res. 186: 343–353.
  • Schwartz, J. R., Shah, R., Krigbaum, H., Sacha, J., Vogt, A. and Blume-Peytavi, U. 2011. New insights on dandruff/seborrhoeic dermatitis: The role of the scalp follicular infundibulum in effective treatment strategies. Br. J. Dermatol. 165: 18–23.
  • Scientific Committee on Consumer Safety. 2014. Opinion on zinc pyrithione. COLIPA number P81, adopted at its 2nd plenary meeting of June 18, 2013. SCCS/1512/13 Revision of 18 June 2014. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_133.pdf
  • Scientific Committee on Cosmetic Products and Non-Food Products. 2002. Opinion concerning zinc pyrithione. COLIPA number P81. Adopted by SCCNFP during 22nd plenary meeting of December 17. SCCNFP/0671/02. http://ec.europa.eu/health/ph_risk/committees/sccp/documents/out225_en.pdf
  • Shaw, E., Bernstein, J., Losee, K., and Lott, W. 1950. Analogs of aspergillic acid. IV. Substituted 2-bromopyridine-N-oxides and their conversion to cyclic thiohydroxamic acids. J. Am. Chem. Soc. 72: 4362–4364.
  • Snyder, D. R., Gralla, E. J., Coleman, G. L., and Wedig, J. H. 1977. Preliminary neurological evaluation of generalized weakness in zinc pyrithione treated rats. Food Cosmet. Toxicol. 15: 43–47.
  • Sun, P.–J., Fernando, W., and Freiser, H. 1964. Formation constants of transition metal complexes of 2-hydroxypyridine-1-oxide and 2–mercaptopyridine-1-oxide. Anal. Chem. 36: 2485–2488.
  • Turley, P. A., Fenn, R. J., and Ritter, J. C. 2000. Pyrithiones as antifoulants: Environmental chemistry and preliminary risk assessment. Biofouling 15: 175–182.
  • U.S. Environmental Protection Agency. 2016. Benchmark dose software. https://www.epa.gov/bmds/download-benchmark-dose-software-bmds.
  • Wada, O., Kurihara, N., and Qiang, G. 1995. Risk assessment: Present and future. Jpn. J. Toxicol. Environ Health 41: 256–273.
  • Wedig, J. H., Wentworth, R. A., and Gallo, M. A. 1978. Disposition of zinc pyrithione in the rat. Food Cosmet. Toxicol. 16: 553–561.
  • Wedig, J. H., Barbee, S. J., and Mitoma, C. 1984. Pyrithione: Plasma metabolite in man. Fundam. Appl. Toxicol. 4: 497–498.
  • White, D. R., Ingram, D., and Fitzgerald, M. 1981. Calculated electron interaction data for ICRP reference man (1975) organs and tissues. Health Phys. 40: 195–204.
  • Ziller, S. A. 1977. Absorption, excretion and tissue distribution of 2-pyridinethiol 1-oxide. Food Cosmet. Toxicol. 15: 49–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.