314
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Physiological-Based Pharmacokinetic Model For The Broad Spectrum Antimicrobial Zinc Pyrithione: II. Dermal Absorption And Dosimetry In The Rat

, , &

References

  • Bailey, P., C. Arrowsmith, K. Darling, J. Dexter, J. Eklund, A. Lane, C. Little, B. Murray, A. Scott, A. Williams, et al. 2003. A double-blind randomized vehicle-controlled clinical trial investigating the effect of ZnPTO dose on the scalp vs. antidandruff efficacy and antimycotic activity. Int. J. Cosmet. Sci. 25 (4):183–88. doi:10.1046/j.1467-2494.2003.00183.x.
  • Black, J. G., and D. Howes. 1978. Toxicity of pyrithiones. Clin. Toxicol 13 (1):1–26. doi:10.3109/15563657808988226.
  • Black, J. G., D. Howes, and T. Rutherford. 1975. Skin deposition and absorption of zinc pyrithione in laboratory animals. Actualites De Dermocosmetologie Centre European De Dermocosmeetologie 69:127–42.
  • Camps, M., A. Barani, G. Gregori, A. Bouchez, B. Le Berre, C. Bressy, Y. Blache, J.-F. Briand, and C. R. Lovell. 2014. Antifouling coatings influence both abundance and community structure of colonizing biofilms: A case study in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 80 (16):4821–31. doi:10.1128/AEM.00948-14.
  • Chandler, C. J., and I. H. Segel. 1978. Mechanism of the antimicrobial action of pyrithione: Effects on membrane transport, ATP levels, and protein synthesis. Antimicrob. Agents Chemother. 14 (1):60–68. doi:10.1128/AAC.14.1.60.
  • Charnick, S. B., R. Kawai, J. R. Nedelman, M. Lemaire, W. Niederberger, and H. Sato. 1995. Physiologically based pharmacokinetic modeling as a tool for drug development. . Journal of Pharmacokinetics and Biopharmaceutics 23 (2):217–29. doi:10.1007/BF02354273.
  • Chiu, W. A., H. A. Barton, R. S. DeWoskin, P. Schlosser, C. M. Thompson, B. Sonawane, J. C. Lipscomb, and K. Krishnan. 2007. Evaluation of physiologically based pharmacokinetic models for use in risk assessment. Journal of Applied Toxicology 27 (3):218–37. doi:10.1002/jat.1225.
  • Clewell, H. J., P. R. Gentry, and J. M. Gearhart. 1997. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment. Journal of Toxicology and Environmental Health 52 (6):475–515. doi:10.1080/00984109708984077.
  • DeWoskin, R. S., L. M. Sweeney, J. G. Teeguarden, R. Sams, and J. Vandenberg. 2013. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. Food Chem. Toxicol. 58:506–21. doi:10.1016/j.fct.2013.05.008.
  • Diamond, G., N. Skoulis, A. Jeffcoat, and J. F. Nash. 2017. A physiologically based pharmacokinetic model for the broad-spectrum antimicrobial zinc pyrithione: I. Development and verification. Journal of Toxicology and Environmental Health, Part A 80 (2):69–90. doi:10.1080/15287394.2016.1245123.
  • Dinning, D., -A.-A. Al Adham, A. Austin, and C. Collier. 1998. A novel assay for the distribution of pyrithione biocides in bacterial cells. Lett. Appl. Microbiol. 27 (1):1–4. doi:10.1046/j.1472-765X.1998.00376.x.
  • Doose, C. A., J. Ranke, F. Stock, U. Bottin-Weber, and B. Jastorff. 2004. Structure–activity relationships of pyrithiones – IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem. 6 (5):259–66. doi:10.1039/B314753C.
  • Durkin, P., R. Hertzberg, and G. Diamond. 2004. Application of PBPK model for 2,4-D to estimates of risk in backpack applicators. Environmental Toxicology and Pharmacology 16 (1–2):73–91. doi:10.1016/j.etap.2003.09.003.
  • Fischer, P., K. Hansen, and D. Breuer. 2003. Measurement of biocides in metalworking fluids and in workplace air using capillary electrophoresis. Appl. Occup. Environ. Hyg. 18 (4):226–31. doi:10.1080/10473220301403.
  • Gibson, W. B., A. R. Jeffcoat, T. S. Turan, R. H. Wendt, P. F. Hughes, M. E. Twine, A. R. Jeffcoat, T. S. Turan, R. H. Wendt, P. F. Hughes, et al. 1982. Zinc pyridinethione: Serum metabolites of zinc pyridinethione in rabbits, rats, monkeys, and dogs after oral dosing. Toxicol. Appl. Pharmacol. 62 (2):237–50. doi:10.1016/0041-008X(82)90122-3.
  • Gibson, W. B., and G. B. Calvin. 1978. Percutaneous absorption of zinc pyridinethione in monkeys. Toxicol. Appl. Pharmacol. 43 (3):425–37. doi:10.1016/S0041-008X(78)80002-7.
  • Guthery, E., L. A. Seal, and E. L. Anderson. 2005. Zinc pyrithione in alcohol-based products for skin antisepsis: Persistence of antimicrobial effects. Am. J. Infect. Control 33 (1):15–22. doi:10.1016/j.ajic.2004.07.012.
  • Holmes, A. M., I. Kempson, T. Turnbull, D. Paterson, and M. S. Roberts. 2018. Imaging the penetration and distribution of zinc and zinc species after topical application of zinc pyrithione to human skin. Toxicol. Appl. Pharmacol. 343:40–47. doi:10.1016/j.taap.2018.02.012.
  • Howes, D., and J. G. Black. 1975. Comparative percutaneous absorption of pyrithiones. Toxicology 5 (2):509–220. doi:10.1016/0300-483X(75)90118-3.
  • Howlett, H. C. S., and N. J. Van Abbe. 1975. The action and fate of sodium pyridinethione when applied topically to the rabbit. J. Soc. Cosmet. Chem. 26:3–15.
  • HSE (The Health and Safety Executive) 2003. Evaluation on zinc pyrithione: Use as a booster biocide in antifouling products. Advisory committee on pesticides, the health and safety executive, biocides & pesticides assessment unit, Bootle, Merseyside, England
  • ILSI (International Life Sciences Institute). 1994. Physiologic Parameter Values for PBPK Models. A Report Prepared by the International Life Sciences Institute, Risk Science Institute, under a cooperative agreement with the U.S. Environmental Protection Agency, Office of Health and Environmental Assessment. December.
  • Irwin, S. 1968. Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia 13 (3):222–57. doi:10.1007/BF00401402.
  • Kasting, G. B., T. G. Filloon, W. R. Francis, and M. P. Meredith. 1994. Improving the sensitivity of in vitro skin preparation experiments. Pharmaceutical Research 11 (12):1747–54. doi:10.1023/A:1018915416930.
  • Klaassen, C. D. 1976. Absorption, distribution, and excretion of zinc pyridinethione in rabbits. Toxicol. Appl. Pharmacol. 35 (3):581–87. doi:10.1016/0041-008X(76)90080-6.
  • Knaak, J. B., C. C. Dary, F. Power, C. B. Thompson, and J. N. Blancato. 2004. Physicochemical and Biological Data for the Development of Predictive Organophosphorus Pesticide QSARs and PBPK/PD Models for Human Risk Assessment. Crit. Rev. Toxicol. 34 (2):143–207. doi:10.1080/10408440490432250.
  • Knight, A. G. 1973. Human models for in vivo and in vitro assessment of topical antifungal compounds. Br. J. Dermatol. 89 (5):509–14. doi:10.1111/j.1365-2133.1973.tb03013.x.
  • Krishnan, K., and G. Johanson. 2005. Physiologically-based pharmacokinetic and toxicokinetic models in cancer risk assessment. Journal of Environmental Science and Health, Part C : Environmental Carcinogenesis & Ecotoxicology Reviews 23 (1):31–53. doi:10.1081/GNC-200051856.
  • Larson, P. S. 1958. Toxicologic Observations on the effect of adding Zn-pyridinethione to the diet of rats for a period of two years. Report to Olin Corporation. pp. 1–15.
  • LoPachin, R. M., E. J. Lehning, L. A. Opanashuk, and B. S. Jortner. 2000. Rate of neurotoxicant exposure determines morphologic manifestations of distal axonopathy. Toxicol. Appl. Pharmacol. 167 (2):75–86. doi:10.1006/taap.2000.8984.
  • MAK, 52. Lieferung, 2012. Zinkpyrithion. (http://onlinelibrary.wiley.com/doi/10.1002/3527600418.mb1346341d0052/pdf)
  • McDougal, J. N. 1998. Prediction – Physiological models. In Dermal Absorption and Toxicity Assessment, ed. M. S. Roberts and K., . A. Walters, 189–202. New York: Marcel Dekker, Inc..
  • Mitoma, C., T. Steeger, J. Rogers, D. Thomas, and J. H. Wedig. 1983. Metabolic disposition of pyrithiones. Fundamental and Applied Toxicology 3 (4):256–63. doi:10.1016/S0272-0590(83)80137-7.
  • Okumura, T., S. Hayashi, F. Tokiwa, and S. Horin 1975. Adsorption of zinc pyrithione onto hair and skin. International Federation of Societies of Cosmetic Chemists VIIIth International Congress, B5, pp. 1–12.
  • Parekhm, C., B. H. Min, and L. Goldber. 1970. Experimental studies of sodium pyridinethione. I. Percutaneous absorption in laboratory animals. Food. Cosmet. Toxicol 8 (2):147–60. doi:10.1016/S0015-6264(70)80333-9.
  • Reeder, N. L., J. Xu, R. S. Youngquist, J. R. Schwartz, R. C. Rust, and C. W. Saunders. 2011. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol. 165 (Suppl. 2):9–12. doi:10.1111/j.1365-2133.2011.10571.x.
  • Roberts, M. S., Y. G. Anissimov, and R. A. Gonsalvez. 1999. Mathematical models in percutaneous absorption. In Percutaneous Absorption – Drugs – Cosmetics – Mechanisms - Methodology, ed. R. L. Bronaugh and H. I. Maibach, 3–55. New York: Marcel Dekker, Inc..
  • Ross, J. F., and G. T. Lawhorn. 1990. ZPT-related distal axonopathy: Behavioral and electrophysiologic correlates in rats. Neurotoxicol. Teratol 12 (2):153–59. doi:10.1016/0892-0362(90)90128-Y.
  • Rush, A. K., J. F. Nash, E. Smith, and G. Kasting, G.B. 2019. Formulation and artificial sebum effects on the percutaneous absorption of zinc pyrithione through excised human skin. Skin Pharmacology and Physiology 32 (4):1–11. doi:10.1159/000499477.
  • Rush, A. K., M. A. Miller, I. I. I. Smith, and E. D. Kasting, G. B. 2015. A quantitative radioimmunological method for evaluating lateral diffusion rates in skin. J. Controlled Release 216:1–8. doi:10.1016/j.jconrel.2015.07.032.
  • Sahenk, Z., and J. R. Mendell. 1980. Axoplasmic transport in zinc pyridinethione neuropathy: Evidence for an abnormality in distal turnaround. Brain Res. 186 (2):343–53. doi:10.1016/0006-8993(80)90980-4.
  • Sahenk, Z., and J. R. Mendell. 1979. Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy. J Neuropathol Exp Neurol 38(5): 532–550.
  • SCCNFP (Scientific Committee on Cosmetic Products and Nonfood Products). 2002. Minutes of the 22nd Plenary Meeting. Brussels, 17 December. European Commission. SCCNFP/0632/02.
  • SCCS (Scientific Committee on Consumer Safety) 2014. SCCS OPINION on Zinc pyrithione COLIPA n P81. SCCS/1512/13 Revision of 18 June 2014. https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_133.pdf
  • SCCS (Scientific Committee on Consumer Safety) 2018. SCCS ADDENDUM to the scientific opinion on Zinc pyrithione (P81) ref. SCCS1512/13. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_216.pdf
  • SCCS (Scientific Committee on Consumer Safety) 2020. SCCS OPINION on Zinc pyrithione CAS No. 134363-41-7) Submission III. SCCS/1614/19. https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_236.pdf.
  • Shaw, E., J. Bernstein, K. Losee, and W. Lott. 1950. Analogs of Aspergillic Acid. IV. Substituted 2-Bromopyridine-N-oxides and Their Conversion to Cyclic Thiohydroxamic Acids1. J. Am. Chem. Soc. 72 (10):4362–64. doi:10.1021/ja01166a008.
  • Snyder, D. R., E. J. Gralla, G. L. Coleman, and J. H. Wedig. 1977. Preliminary neurological evaluation of generalized weakness in zinc pyrithione treated rats. Food Cosmet. Toxicol 15 (1):43–47. doi:10.1016/S0015-6264(77)80262-9.
  • Sugino, M., H. Todo, T. Suzuki, K. Nakada, K. Tsuji, H. Tokunaga, H. Jinno, and K. Sugibayashi. 2014. Safety prediction of topically exposed biocides using permeability coefficients and the desquamation rate at the stratum corneum. J. Toxicol. Sci. 39 (3):475–85. doi:10.2131/jts.39.475.
  • Sun, P. J., Q. Fernando, and H. Freiser. 1964. Structure and behavior of organic analytical reagents. Formation constants of transition metal complexes of 2-hydroxypyridine-1-oxide and 2-mercaptoypridine-1-oxide. Anal. Chem. 36 (13):2485–88. doi:10.1021/ac60219a034.
  • Thompson, C. M., B. Sonawane, H. A. Barton, R. S. DeWoskin, J. C. Lipscomb, P. Schlosser, W. A. Chiu, and K. Krishnan. 2008. Approaches for applications of physiologically based pharmacokinetic models in risk assessment. J Toxicol Environ Health B 11 (7):519–47. doi:10.1080/10937400701724337.
  • Tilson, H. A., and V. C. Moser. 1992. Comparison of screening approaches. NeuroToxicology 13:1–14.
  • Turley, P. A., R. J. Fenn, and J. C. Ritter. 2000. Pyrithiones as antifoulants: Environmental chemistry and preliminary risk assessment. Biofouling 15 (1–3):175–82. doi:10.1080/08927010009386308.
  • U.S. EPA 2018. Benchmark dose Software. Available at: https://www.epa.gov/bmds.
  • Wada, D. R., D. R. Stanski, and W. F. Ebling. 1995. A PC-based graphical simulator for physiological pharmacokinetic models. Comput. Meth Programs Biomed 48 (3):245–55. doi:10.1016/0169-2607(95)01624-3.
  • Wedig, J. H., S. J. Barbee, C. Mitoma, S. J. Barbee, C. Mitoma, and C. Mitoma. 1984. Pyrithione: Plasma metabolite in man. Fundam. Appl. Toxicol. 4 (3):497–98. doi:10.1016/0272-0590(84)90209-4.
  • White, D. R., D. Ingram, and M. Fitzgerald. 1981. Calculated electron interaction data for ICRP reference man (1975) organs and tissues. Health Phys. 40 (2):195–204. doi:10.1097/00004032-198102000-00004.
  • Ziller, S. A. 1977. Absorption, excretion and tissue distribution of 2-pyridinethiol-1-oxide. Food. Cosmet. Toxicol 15 (1):49–54. doi:10.1016/S0015-6264(77)80263-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.