258
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of fly ash deposition on plants diversity, metal content, and associated risk on grazing ruminants in the vicinity of Morupule power station, Botswana

ORCID Icon, , ORCID Icon, &
Received 13 Sep 2022, Accepted 05 Mar 2024, Published online: 19 Mar 2024

References

  • Aganga, A. A., C. M. Tsopito, and T. Adogla-Bessa. 1998. Feed potential of Acacia species to ruminants in Botswana. Arch Zootec 47:659–68.
  • Akinyemi, F. O. 2017. Climate change and variability in semiarid palapye, eastern Botswana: An assessment from smallholder farmers’ perspective. Weather, Climate, and Society 9 (3):349–65. doi: 10.1175/WCAS-D-16-0040.1.
  • Akinyemi, F. O., and M. O. Kgomo. 2019. Vegetation dynamics in African drylands: An assessment based on the Vegetation Degradation Index in an agro-pastoral region of Botswana. Regional Environmental Change 19 (7):2027–39. doi: 10.1007/s10113-019-01541-4.
  • Akinyemi, F. O., L. T. Tlhalerwa, and P. N. Eze. 2021. Land degradation assessment in an African dryland context based on the Composite Land Degradation Index and mapping method. Geocarto International 36 (16):1838–54. doi: 10.1080/10106049.2019.1678673.
  • Alloway, B. J. 2013. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils, ed. B. J. Alloway, 11–50. Dordrecht; Springer. doi: 10.1007/978-94-007-4470-7.
  • Al-Thani, R. F., and B. T. Yasseen. 2020. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environmental Pollution (Barking, Essex: 1987) 259:113694. doi: 10.1016/j.envpol.2019.113694.
  • Ball, D. F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science 15 (1):84–92. doi: 10.1111/j.1365-2389.1964.tb00247.x.
  • Basu, M., M. Pande, P. B. S. Bhadoria, and S. C. Mahapatra. 2009. Potential fly-ash utilization in agriculture: A global review. Prog. Nat. Sci.19 (10):1173–86. doi: 10.1016/j.pnsc.2008.12.006.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54 (5):464–5. doi: 10.2134/agronj1962.00021962005400050028x.
  • Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-Total. In Methods of soil analysis. Part 2. Chemical and microbiological properties, eds. A. L. Page, R. H. Miller, D. R. Keeney, 595–624. Madison, WI: American Society of Agronomy, Soil Science Society of America. doi: 10.2134/agronmonogr9.2.2ed.c31.
  • Chowdhury, A., and S. K. Maiti. 2016. Identification of metal tolerant plant species in mangrove ecosystem by using community study and multivariate analysis: A case study from Indian Sunderban. Environmental Earth Sciences 75 (9):1–21. doi: 10.1007/s12665-016-5391-1.
  • Dambe, L. M., K. Mogotsi, M. Odubeng, and O. E. Kgosikoma. 2015. Nutritive value of some important indigenous livestock browse species in semi-arid mixed Mopane bushveld, Botswana. Livestock Research for Rural Development 27:209. http://www.lrrd.org/lrrd27/10/mogo27209.htm.
  • Datta, S. N., S. K. Chakraborty, A. K. Jaiswar, and G. Ziauddin. 2010. A comparative study on intertidal faunal biodiversity of selected beaches of Mumbai coast. Journal of Environmental Biology 31 (6):981–6.
  • Davari, N., M. H. Jouri, and A. Ariapour. 2011. Comparison of measurement of indices of diversity, richness, dominance, and evenness in rangeland ecosystem (Case study; Jvaherdeh-Ramesa). Journal of Rangeland Science 2 (1):389–98.
  • Gajaje, K., V. U. Ultra, P. W. David, and G. Rantong. 2021. Rhizosphere properties and heavy metal accumulation of plants growing in the fly ash dumpsite, Morupule power plant, Botswana. Environmental Science and Pollution Research International 28 (16):20637–49. doi: 10.1007/s11356-020-11905-7.
  • Gajić, G., L. Djurdjević, O. Kostić, S. Jarić, M. Mitrović, and P. Pavlović. 2018. Ecological potential of plants for phytoremediation and eco-restoration of fly ash deposits and mine wastes. Frontiers in Environmental Science 6:1–24. doi: 10.3389/fenvs.2018.00124.
  • Gupta, D. K., U. N. Rai, R. D. Tripathi, and M. Inouhe. 2002. Impacts of fly-ash on soil and plant responses. Journal of Plant Research 115 (6):401–9. doi: 10.1007/s10265-002-0057-3.
  • Hajar, E. W. I., A. Z. B. Sulaiman, and A. M. Sakinah. 2014. Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environmental Sciences 20:386–93. doi: 10.1016/j.proenv.2014.03.049.
  • Haque, M., K. Biswas, and S. S. Narayan. 2021. Phytoremediation strategies of some plants under heavy metal stress. Plant Stress Physiology. doi: 10.5772/intechopen.94406.
  • Heath, A., and R. Heath. 2009. A field guide to the plants of Northern Botswana including the Okavango Delta. Richmond, UK: Henry Ling Ltd.
  • Johnston, H., L. Beasley, and N. MacPherson. 2014. Copper toxicity in a New Zealand dairy herd. Irish Veterinary Journal 67:20. doi: 10.1186/2046-0481-67-20.
  • Kanagaraj, S., M. Selvaraj, K. R. Das, and G. Munisamy. 2017. Assessment of tree species diversity and its distribution pattern in Pachamalai Reserve Forest, Tamil Nadu. Journal of Sustainable Forestry 36 (1):32–46. doi: 10.1080/10549811.2016.1238768.
  • Kefelegn, G. A., and B. Desta. 2021. Ximenia americana: Economic importance, medicinal value, and current status in Ethiopia. The Scientific World Journal 2021:1–7. doi: 10.1155/2021/8880021.
  • Kgosikoma, O., W. Mojeremane, and B. A. Harvie. 2012. Pastoralists’ perception and ecological knowledge on savanna ecosystem dynamics in semi-arid Botswana. Ecology and Society 17 (4):27–37. doi: 10.5751/ES-05247-170427.
  • Khan, I., and R. Umar. 2019. Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundwater for Sustainable Development 8:346–57. doi: 10.1016/j.gsd.2018.12.002.
  • Lee, C. R., C. I. Yoo, J. H. Lee, and S. K. Kang. 2002. Nasal septum perforation of welders. Industrial Health 40 (3):286–9. doi: 10.2486/indhealth.40.286.
  • Maiti, D., and V. C. Pandey. 2020. Metal remediation potential of naturally occurring plants growing on barren fly ash dumps. Environmental Geochemistry and Health 43 (4):1415–26. doi: 10.1007/s10653-020-00679-z.
  • Manyiwa, T., V. U. Ultra, G. Rantong, K. A. Opaletswe, G. Gabankitse, S. B. Taupedi, and K. Gajaje. 2021. Heavy metals in soil, plants, and associated risk on grazing ruminants in the vicinity of Cu–Ni mine in Selebi-Phikwe, Botswana. Environmental Geochemistry and Health 44 (5):1633–48. doi: 10.1007/s10653-021-00918-x.
  • Mapaure, I., P. M. Chimwamurombe, B. S. Mapani, and F. A. Kamona. 2011. Impacts of mine dump pollution on plant species diversity, composition and structure of a semiarid savanna in Namibia. African Journal of Range & Forage Science 28 (3):149–54. doi: 10.2989/10220119.2011.647753.
  • Menhinick, E. F. 1964. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45 (4):859–61. doi: 10.2307/1934933.
  • Moleele, N. M., S. Ringrose, W. Matheson, and C. Vanderpost. 2001. More woody plants? The status of bush encroachment in Botswana’s grazing areas. Journal of Environmental Management 64 (1):3–11. doi: 10.1006/jema.2001.0486.
  • Moreno-Lora, A., and A. Delgado. 2020. Factors determining Zn availability and uptake by plants in soils developed under Mediterranean climate. Geoderma 376:114509. doi: 10.1016/j.geoderma.2020.114509.
  • Mphinyane, W. N., G. Tacheba, and J. Makore. 2015. Seasonal diet preference of cattle, sheep, and goat grazing on the communal grazing rangeland in the Central District of Botswana. African Journal of Agricultural Research 10 (29):2791–803. doi: 10.5897/AJAR2014.9157.
  • Mudzengi, C., S. Shakkie, C. Murungweni, E. Dahwa, X. Poshiwa, and M. Shoko. 2013. Woody species composition and structure in a semi-arid environment invaded by Dichrostachy cinerea (L.) Wight and Arn (Fabaceae). International Journal of Scientific and Research Publications 3:1–10. http://www.pensoft.net/natureconservation.
  • Mukhopadhyay, S., V. Rana, A. Kumar, and S. K. Maiti. 2017. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India. Environmental Science and Pollution Research International 24 (29):22990–3005. doi: 10.1007/s11356-017-9930-4.
  • Negin, B., S. Hen-Avivi, E. Almekias-Siegl, L. Shachar, G. Jander, and A. Aharoni. 2022. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. The New Phytologist 237 (5):1574–89. doi: 10.1111/nph.18615.
  • Nouri, M., and A. Haddioui. 2016. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environmental Monitoring and Assessment 188 (1):6. 12. doi: 10.1007/s10661-015-5012-6.
  • Orwa, C., A. Mutua, R. Kindt, R. Jamnadass, and A. Simons. 2009. Agroforestry Database; a tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb.
  • Oudtshoorn, F. V. 2009. Guide to grasses of Southern Africa. In Briza publications, 2nd ed. Pretoria: Briza Publications.
  • Owen-Smith, N., and S. M. Cooper. 1987. Palatability of woody plants to browsing ruminants in a South African Savanna. Ecology 68 (2):319–31. doi: 10.2307/1939263.
  • Panda, R. B., and T. Biswal. 2018. Impact of fly ash on soil properties and productivity. International Journal of Agriculture, Environment and Biotechnology 11 (2):275–83.
  • Panda, D., L. Mandal, and J. Barik. 2020. Phytoremediation potential of naturally growing weed plants grown on fly ash amended soil for restoration of fly ash deposit. International Journal of Phytoremediation 22 (11):1195–203. doi: 10.1080/15226514.2020.1754757.
  • Pandey, V. C. 2012. Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety 82:8–12. doi: 10.1016/j.ecoenv.2012.05.002.
  • Pandey, S. K., T. Bhattacharya, and S. Chakraborty. 2016. Metal phytoremediation potential of naturally growing plants on fly ash dumpsite of Patratu thermal power station, Jharkhand, India. International Journal of Phytoremediation 18 (1):87–93. doi: 10.1080/15226514.2015.1064353.
  • Pandey, V. C. 2020. Fly ash properties, multiple uses, threats, and management: An introduction. In Phytomanagement of fly ash, 1–34. Amsterdam: Elsevier. doi: 10.1016/b978-0-12-818544-5.00001-8.
  • Pandey, V. C., P. Prakash, O. Bajpai, A. Kumar, and N. Singh. 2015. Phytodiversity on fly ash deposits: Evaluation of naturally colonized species for sustainable phytorestoration. Environmental Science and Pollution Research International 22 (4):2776–87. doi: 10.1007/s11356-014-3517-0.
  • Pandey, V. C., A. Rai, L. Singh, and D. P. Singh. 2020. Understanding the role of litter decomposition in restoration of fly ash ecosystem. Bulletin of Environmental Contamination and Toxicology 108 (3):389–95. doi: 10.1007/s00128-020-02994-8.
  • Pani, N. K., P. Samal, R. Das, and S. Sahoo. 2015. Effect of fly ash on growth and yield of sunflower (Helianthus annuus L.). Journal of Agronomy and Agricultural Research 7 (2):64–74. http://www.innspub.net/.
  • Parkinson, T. J., J. J. Vermunt, and J. Malmo. 2010. Diseases of cattle in Australasia, 1st ed. Wellington: The New Zealand Veterinary Association Foundation for Continuing Education.
  • Pechova, A., and L. Pavlata. 2007. Chromium as essential nutrient: A review. Veterinární Medicína 52 (1):1–18. https://www.agriculturejournals.cz/publicFiles/00554.pdf. doi: 10.17221/2010-VETMED.
  • Popovic, D., T. Bozic, J. Stevanovic, M. Frontasyeva, D. Todorovic, J. Ajtic, and V. Spasic Jokic. 2010. Concentration of trace elements in blood and feed of homebred animals in Southern Serbia. Environmental Science and Pollution Research International 17 (5):1119–28. doi: 10.1007/s11356-009-0274-6.
  • Phillips, M. 1991. A guide to the arable weeds of Botswana. London: Balding + Mansell Limited.
  • Smith, T. M., and R. L. Smith. 2012. Elements of ecology, 3rd ed. Pearson Benjamin Cummings.
  • Taupedi, S., and V. U. Ultra. 2022. Morupule fly ash as amendments in agricultural soil in central Botswana. Environmental Technology & Innovation 28:102695. doi: 10.1016/j.eti.2022.102695.
  • Tjelele, T. J., L. E. Dziba, and H. T. Pule. 2012. Recovery and germination of Dichrostachys cinerea seeds fed to goats (Capra hircus). Rangeland Ecology & Management 65 (1):105–8. doi: 10.2111/REM-D-09-00161.1.
  • Ultra, V. U. 2020. Fly ash and compost amendments and mycorrhizal inoculation enhanced the survival and growth of Delonix regia in Cu-Ni mine tailings. Philippine Journal of Science 149:479–89. https://www.researchgate.net/publication/342170684.
  • Vernon, R. 1983. Field guide to important arable weeds of Zambia. In Mount Makulu central research station. Chilanga.
  • World Coal Association. 2020. https://www.worldcoal.org/coal-facts/.
  • Yadav, V. K., A. Gacem, N. Choudhary, A. Rai, P. Kumar, K. K. Yadav, M. Abbas, N. B. Khedher, N. S. Awwad, D. Barik, et al. 2022. Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications. Minerals 12 (12):1503. doi: 10.3390/min12121503.
  • Zhai, M., O. Totolo, M. P. Modisi, R. B. Finkelman, S. M. Kelesitse, and M. Menyatso. 2009. Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health 31 (6):759–77. doi: 10.1007/s10653-009-9260-7.