63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enrichment of a fullerene mixture with endohedral metallofullerenes: methodology and evaluation

, , , , , & ORCID Icon show all
Received 14 Feb 2024, Accepted 28 Mar 2024, Published online: 22 Apr 2024

References

  • (a) Maschmann, M. R.; Franklin, A. D.; Amama, P. B.; Zakharov, D. N.; Stach, E. A.; Sands, T. D.; Fisher, T. S. Vertical Single- and Double-Walled Carbon Nanotubes Grown from Modified Porous Anodic Alumina Templates. Nanotechnology 2006, 17, 3925–3929. DOI: 10.1088/0957-4484/17/15/052. (b) Kim, K. H.; Brunel, D.; Gohier, A.; Sacco, L.; Châtelet, M.; Cojocaru, C. S. Cup-Stacked Carbon Nanotube Schottky Diodes for Photovoltaics and Photodetectors. Adv. Mater. 2014, 26, 4363–4369. DOI: 10.1002/adma.201400775. (c) Li, J.-C.; Hou, P.-X.; Liu, C. Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction. Small 2017, 13, 1702002. DOI: 10.1002/smll.201702002. (d) Lagrichi, O.; Morin, A.; Buttard, D. Platinum-Nickel Nanotubes Array as Cathode for PEMFC. ECS Trans. 2019, 92, 627–633. DOI: 10.1149/09208.0627ecst. (e) Kandy, M. M.; Gaikar, V. G. Enhanced Photocatalytic Reduction of CO2 Using CdS/Mn2O3 Nanocomposite Photocatalysts on Porous Anodic Alumina Support with Solar Concentrators. Renew. Energy 2019, 139, 915–923. DOI: 10.1016/j.renene.2019.03.002. (f) Li, C.; Yang, J.; Zhang, L.; Li, S.; Yuan, Y.; Xiao, X.; Fan, X.; Song, C. Carbon-Based Membrane Materials and Applications in Water and Wastewater Treatment: A Review. Environ. Chem. Lett. 2021, 19, 1457–1475. DOI: 10.1007/s10311-020-01112-8. (g) Zhong, M.; Zhang, M.; Li, X. Carbon Nanomaterials and Their Composites for Supercapacitors. Carbon Energy 2022, 4, 950–985. DOI: 10.1002/cey2.219.
  • Sacco, L. N.; Vollebregt, S. Overview of Engineering Carbon Nanomaterials Such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates. Nanomaterials (Basel) 2023, 13, 260. DOI: 10.3390/nano13020260.
  • Perevedentseva, E.; Ali, N.; Karmenyan, A.; Skovorodkin, I.; Prunskaite-Hyyryläinen, R.; Vainio, S.; Cheng, C.-L.; Kinnunen, M. Optical Studies of Nanodiamond-Tissue Interaction: Skin Penetration and Localization. Materials (Basel) 2019, 12, 3762. DOI: 10.3390/ma12223762.
  • (a) Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes. Science 2007, 315, 77–81. DOI: 10.1126/science.1135303. (b) Buron, J. D.; Petersen, D. H.; Bøggild, P.; Cooke, D. G.; Hilke, M.; Sun, J.; Whiteway, E.; Nielsen, P. F.; Hansen, O.; Yurgens, A.; Jepsen, P. U. Graphene Conductance Uniformity Mapping. Nano Lett. 2012, 12, 5074–5081. DOI: 10.1021/nl301551a.
  • (a) Roman, R. E.; Kwan, K.; Cranford, S. W. Mechanical Properties and Defect Sensitivity of Diamond Nanothreads. Nano Lett. 2015, 15, 1585–1590. DOI: 10.1021/nl5041012. (b) Felisberto, M.; Tzounis, L.; Sacco, L.; Stamm, M.; Candal, R.; Rubiolo, G. H.; Goyanes, S.; Vozer Felisberto, M. D. Carbon Nanotubes Grown on Carbon Fiber Yarns by a Low Temperature CVD Method: A Significant Enhancement of the Interfacial Adhesion between Carbon Fiber/Epoxy Matrix Hierarchical Composites. Compos. Commun. 2017, 3, 33–37. DOI: 10.1016/j.coco.2017.01.003.
  • Che, J.; Çagin, T.; Goddard, W. A. Thermal Conductivity of Carbon Nanotubes. Nanotechnology 2000, 11, 65–69. DOI: 10.1088/0957-4484/11/2/305.
  • (a) Maze, J. R.; Stanwix, P. L.; Hodges, J. S.; Hong, S.; Taylor, J. M.; Cappellaro, P.; Jiang, L.; Gurudev Dutt, M. V.; Togan, E.; Zibrov, A. S.; et al. Nanoscale Magnetic Sensing with an Individual Electronic Spin in Diamond. Nature 2008, 455, 644–647. DOI: 10.1038/nature07279. (b) Dolleman, R. J.; Hsu, M.; Vollebregt, S.; Sader, J. E.; van der Zant, H. S. J.; Steeneken, P. G.; Ghatkesar, M. K. Mass Measurement of Graphene Using Quartz Crystal Microbalances. Appl. Phys. Lett. 2019, 115, 53102. DOI: 10.1063/1.5111086. (c) Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C. S. Ultra-Sensitive NO2 Gas Sensors Based on Single-Wall Carbon Nanotube Field Effect Transistors: Monitoring from Ppm to Ppb Level. Carbon 2020, 157, 631–639. DOI: 10.1016/j.carbon.2019.10.073. (d) Bressi, V.; Ferlazzo, A.; Iannazzo, D.; Espro, C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials (Basel) 2021, 11, 1120. DOI: 10.3390/nano11051120.
  • Shinohara, H. Endohedral Metallofullerenes. Rep. Prog. Phys. 2000, 63, 843–892. DOI: 10.1088/0034-4885/63/6/201.
  • Chai, Y.; Guo, T.; Jin, C. M.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L. H.; Alford, J. M.; Smalley, R. E. Fullerenes with Metals inside. J. Phys. Chem. 1991, 95, 7564–7568. DOI: 10.1021/j100173a002.
  • (a) Yanagi, K.; Okubo, S.; Okazaki, T.; Kataura, H. Endohedral Metallofullerenes as Strong Singlet Oxygen Quenchers. Chem. Phys. Lett. 2007, 435, 306–310. DOI: 10.1016/j.cplett.2006.12.092. (b) Dunsch, L.; Yang, S. F.; Zhang, L.; Svitova, A.; Oswald, S.; Popov, A. A. Metal Sulfide in a C82 Fullerene Cage: A New Form of Endohedral Clusterfullerenes. J. Am. Chem. Soc. 2010, 132, 5413–5421. DOI: 10.1021/ja909580j. (c) Yang, S.; Liu, F.; Chen, C.; Jiao, M.; Wei, T. Fullerenes Encaging Metal Clusters – Clusterfullerenes. Chem. Commun. (Camb) 2011, 47, 11822–11839. DOI: 10.1039/C1CC12318A.
  • Kozlov, V. S.; Suyasova, M. V.; Lebedev, V. T. Synthesis, Extraction and Chromatographic Purification of Higher Empty Fullerenes and Endohedral Gadolinium Metallofullerenes. Russ. J. Appl. Chem. 2014, 87, 121–127. DOI: 10.1134/S1070427214020013.
  • Shinohara, H.; Inakuma, M.; Kishida, M.; Yamazaki, S.; Hashizume, T.; Sakurai, T. An Oriented Cluster Formation of Endohedral Y@C82 Metallofullerenes on Clean Surfaces. J. Phys. Chem. 1995, 99, 13769–13771. DOI: 10.1021/j100038a004.
  • (a) Yoshitake, Y.; Michinobu, T. Antioxidative Activity of Alcohol-Soluble Fullerene Derivative. Fuller. Nanotub. Carbon Nanostruct. 2023, 32, 505–508. DOI: 10.1080/1536383X.2023.2296945. (b) Kobeleva, E. S.; Uvarov, M. N.; Kravets, N. V.; Ponomarev, S. A.; Gurova, O. A.; Okotrub, A. V.; Kazantzev, M. S.; Degtyarenko, K. M.; Kulik, L. V. Fluorinated Carbon Nanotubes as Nonvolatile Additive to the Active Layer of Polymer/Fullerene Solar Cells. Fuller. Nanotub. Carbon Nanostruct. 2023, 31, 464–473. DOI: 10.1080/1536383X.2023.2179618.
  • (a) Popov, A. A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. DOI: 10.1021/cr300297r. (b) Wangqiang, S.; Shuaifeng, H.; Xing, L. Endohedral Metallofullerenes: New Structures and Unseen Phenomena. Chemistry 2020, 26, 5748–5757. DOI: 10.1002/chem.201905306. (c) Cai, W.; Zhang, M.; Echegoyen, L.; Lu, X. Recent Advances in Endohedral Metallofullerenes. Fund. Res. 2024, 11. 37 (15 p.). DOI: 10.1016/j.fmre.2023.12.004.
  • Rogosnitzky, M.; Branch, S. Gadolinium-Based Contrast Agent Toxicity: A Review of Known and Proposed Mechanisms. Biometals 2016, 29, 365–376. DOI: 10.1007/s10534-016-9931-7.
  • Stacul, F.; van der Molen, A. J.; Reimer, P.; Webb, J. A.; Thomsen, H. S.; Morcos, S. K.; Almén, T.; Aspelin, P.; Bellin, M. F.; Clement, O.; Heinz-Peer, G. Contrast Induced Nephropathy: Updated ESUR Contrast Media Safety Committee Guidelines. Eur. Radiol. 2011, 21, 2527–2541. DOI: 10.1007/s00330-011-2225-0.
  • (a) Van Cleempoel, A.; Gijbels, R.; Zhu, D.; Claeys, M.; Richter, H.; Fonseca, A. Quantitative Determination of C60 and C70 in Soot Extracts by High Performance Liquid Chromatography and Mass Spectrometric Characterization. Fullerene Sci. Technol. 1996, 4, 1001–1017. DOI: 10.1080/10641229608001158. (b) Jovanovic, T.; Koruga, D.; Jovancicevic, B. Advances in Chromatographic Separation on Al2O3 and Spectroscopic Characterization of the Higher Fullerenes. Fuller. Nanotub. Carbon Nanostruct. 2014, 22, 384–396. DOI: 10.1080/1536383X.2012.690461.
  • Lu, X.; Shi, Z.; Sun, B.; He, X.; Gu, Z. Isolation and Spectroscopic Study of a Series of Monogadolinium Endohedral Metallofullerenes. Fuller. Nanotub. Carbon Nanostruct. 2005, 13, 13–20. DOI: 10.1081/FST-200040748.
  • Foster, M.; Sohlberg, K. Designing Fullerene Separation Materials: A Theoretical Study. Fuller. Nanotub. Carbon Nanostruct. 2012, 20, 72–84. DOI: 10.1080/1536383X.2010.533305.
  • Keller, R. A.; Calvin Giddings, J. Chromatography. Encyclopedia Britannica 2024, https://www.britannica.com/science/chromatography. Accessed 6 February 2024.
  • Wahab, M. F.; Armstrong, D. W.; Patel, D. C. Peak Shapes and Their Measurements: The Need and the Concept Behind Total Peak Shape Analysis. LCGC North Am. 2017, 35, 846–853. https://www.chromatographyonline.com/view/peak-shapes-and-their-measurements-need-and-concept-behind-total-peak-shape-analysis-0.
  • (a) Stevenson, P. G.; Mnatsakanyan, M.; Guiochon, G.; Shalliker, R. A. Peak Picking and the Assessment of Separation Performance in Two-Dimensional High Performance Liquid Chromatography. Analyst 2010, 135, 1541–1550. DOI: 10.1039/b922759h. (b) Risum, A. B.; Bro, R. Using Deep Learning to Evaluate Peaks in Chromatographic Data. Talanta 2019, 204, 255–260. DOI: 10.1016/j.talanta.2019.05.053. (c) O’Haver, T. A Pragmatic Introduction to Signal Processing 2023: With Applications in Scientific Measurement: A Book by Prof Thomas O'Haver; Kindle Direct Publishing: Seattle, WA, 2023; p. 528.
  • Churilov, G. N.; Popov, A. A.; Vnukova, N. G.; Dudnik, A. I.; Glushchenko, G. A.; Samoylova, N. A.; Dubinina, I. A.; Gulyaeva, U. E. A Method and Apparatus for High-Throughput Controlled Synthesis of Fullerenes and Endohedral Metal Fullerenes. Tech. Phys. Lett. 2016, 42, 475–477. DOI: 10.1134/S1063785016050072.
  • Churilov, G.; Popov, A.; Vnukova, N.; Dudnik, A.; Samoylova, N.; Glushenko, G. Controlled Synthesis of Fullerenes and Endohedral Metallofullerenes in High Frequency Arc Discharge. Fuller. Nanotub. Carbon Nanostruct. 2016, 24, 675–678. DOI: 10.1080/1536383X.2016.1207062.
  • Ross, M. M.; Nelson, H. H.; Callahan, J. H.; McElvany, S. W. Production and Characterization of Metallofullerenes. J. Phys. Chem. 1992, 96, 5231–5234. DOI: 10.1021/j100192a012.
  • Akiyama, K.; Hamano, T.; Nakanishi, Y.; Takeuchi, E.; Noda, S.; Wang, Z.; Kubuki, S.; Shinohara, H. Non-HPLC Rapid Separation of Metallofullerenes and Empty Cages with TiCl4 Lewis Acid. J. Am. Chem. Soc. 2012, 134, 9762–9767. DOI: 10.1021/ja3030627.
  • Stevenson, S.; Mackey, M.; Pickens, J.; Stuart, M.; Confait, B.; Phillips, P. Selective Complexation and Reactivity of Metallic Nitride and Oxometallic Fullerenes with Lewis Acids and Use as an Effective Purification Method. Inorg. Chem. 2009, 48, 11685–11690. DOI: 10.1021/ic9017147.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.