44
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A facile, green synthesis of carbon quantum dots from folium cycas for rapid and sensitive determination of Fe3+ and cell imaging

, , , &
Received 15 Jan 2024, Accepted 02 Apr 2024, Published online: 17 Apr 2024

References

  • Baker, S.; Baker, G. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. Engl. 2010, 49, 6726–6744. DOI: 10.1002/anie.200906623.
  • Patra, S.; Singh, M.; Subudhi, S.; Mandal, M.; Nayak, A. K.; Sahu, B. B.; Mahanandia, P. One-Step Green Synthesis of In-Situ Functionalized Carbon Quantum Dots from Tagetes Patula Flowers: Applications as a Fluorescent Probe for Detecting Fe3+ Ions and as an Antifungal Agent. J. Photochem. Photobiol. A 2023, 442, 114779. DOI: 10.1016/j.jphotochem.2023.114779.
  • Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. DOI: 10.1021/ja040082h.
  • Fan, R.; Xiang, J.; Zhou, P.; Mei, H.; Li, Y.; Wang, H.; Liu, X.; Wang, X. Reuse of Waste Myrica Rubra for Green Synthesis of Nitrogen-Doped Carbon Dots as an “On-Off-On” Fluorescent Probe for Fe3+ and Ascorbic Acid Detection. Ecotoxicol. Environ. Saf. 2022, 233, 113350. DOI: 10.1016/j.ecoenv.2022.113350.
  • Shi, X.; Wang, X.; Zhang, S.; Zhang, Z.; Meng, X.; Liu, H.; Qian, Y.; Lin, Y.; Yu, Y.; Lin, W.; Wang, H. Hydrophobic Carbon Dots Derived from Organic Pollutants and Applications in NIR Anticounterfeiting and Bioimaging. Langmuir 2023, 39, 5056–5064. DOI: 10.1021/acs.langmuir.3c00075.
  • Rezaei, H.; Zinatizadeh, A. A.; Joshaghani, M.; Zinadini, S. Amino Acid-Based Carbon Quantum Dot Modified MIL-53 (Fe): Investigation of its Visible-Driven Photocatalytic Activity Provided by a Highly Efficient Photoreactor. Mater. Sci. Semicond. Process. 2023, 154, 107190. DOI: 10.1016/j.mssp.2022.107190.
  • Falco, A.; Santa-Helena, E.; Toloza, C.; Almeida, J.; Larrude, D.; Meirelles, F.; Gioda, C.; Aucelio, R.; Gioda, A. Luminescence Imaging and Toxicity Assessment of Graphene Quantum Dots Using In Vitro Models. Fullerenes Nanotubes Carbon Nanostruct. 2021, 30, 657–666. DOI: 10.1080/1536383X.2021.1995367.
  • Jain, R.; Vithalani, R.; Patel, D.; Lad, U.; Modi, C.; Suthar, D.; Solanki, J.; Surati, K. Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots (N-GQDs) as an Efficient Nanoprobe for Imaging of Microbial Cells. Fullerenes Nanotubes Carbon Nanostruct. 2021, 29, 588–595. DOI: 10.1080/1536383X.2021.1872548.
  • Chai, C.; Qiao, X.; Zheng, L.; Duan, H.; Bian, W.; Choi, M. Nitrogen-Doped Carbon Dots a Fluorescent Probe for Detection of p-Hydroxybenzaldehyde and Cell Imaging. Fullerenes Nanotubes Carbon Nanostruct. 2022, 30, 534–542. DOI: 10.1080/1536383X.2021.1966419.
  • Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. DOI: 10.3389/fchem.2019.00671.
  • Qandeel, N.; Ei-Masry, A.; Eid, M.; Moustafa, M.; Ei-Shaheny, R. Fast One-Pot Microwave-Assisted Green Synthesis of Highly Fluorescent Plant-Inspired S, N-Self-Doped Carbon Quantum Dots as a Sensitive Probe for the Antiviral Drug Nitazoxanide and Hemoglobin. Anal. Chim. Acta 2023, 1237, 340592. DOI: 10.1016/j.aca.2022.340592.
  • He, L.; Du, H. Detection of Tartrazine with Fluorescence Sensor from Crayfish Shell Carbon Quantum Dots. J. Food Compos. Anal. 2023, 118, 105200. DOI: 10.1016/j.jfca.2023.105200.
  • Liu, S.; Wang, C.; Li, C.; Wang, J.; Mao, L.; Chen, S. Hair-Derived Carbon Dots Toward Versatile Multidimensional Fluorescent Materials. J. Mater. Chem. C 2014, 2, 6477–6483. DOI: 10.1039/C4TC00636D.
  • Ma, H.; Guan, L.; Chen, M.; Zhang, Y.; Wu, Y.; Liu, Z.; Wang, D.; Wang, F.; Li, X. Synthesis and Enhancement of Carbon Quantum Dots from Mopan Persimmons for Fe3+ Sensing and Anti-Counterfeiting Applications. Chem. Eng. J. 2023, 453, 139906. DOI: 10.1016/j.cej.2022.139906.
  • Qin, J.; Su, Z.; Mao, Y.; Liu, C.; Qi, B.; Fang, G.; Wang, S. Carboxyl-Functionalized Hollow Polymer Microspheres for Detection of Trace Metal Elements in Complex Food Matrixes by ICP-MS Assisted with Solid-Phase Extraction. Ecotoxicol. Environ. Saf. 2021, 208, 111729. DOI: 10.1016/j.ecoenv.2020.111729.
  • Lu, M.; Rees, N.; Kabakaev, A.; Compton, R. Determination of Iron: Electrochemical Methods. Electroanalysis 2012, 24, 1693–1702. DOI: 10.1002/elan.201200268.
  • Dasbasi, T.; Soykan, C.; Ülgen, A. Novel PSt/PGMA/PIN Ternary Composite for SPE and Analysis of Some Heavy Metals in Various Cosmetics and Food Products by Flame AAS. Int. J. Environ. Anal. Chem. 2020, 103, 89–105. DOI: 10.1080/03067319.2020.1853112.
  • Kolaprath, M. K. A.; Benny, L.; Varghese, A.; Sariga. A Facile, Green Synthesis of Carbon Quantum Dots from Polyalthia Longifolia and its Application for the Selective Detection of Cadmium. Dyes Pigm. 2023, 210, 111048. DOI: 10.1016/j.dyepig.2022.111048.
  • Aladesuyi, O.; Oluwafemi, O. S. Synthesis of Glutamine-Based Green Emitting Carbon Quantum Dots as a Fluorescent Nanoprobe for the Determination of Iron (Fe3+) in Solanum Tuberrosum (Potato). Heliyon 2023, 9, e15904. DOI: 10.1016/j.heliyon.2023.e15904.
  • Liu, Y.; Zhao, Y.; Zhang, Y. One-Step Green Synthesized Fluorescent Carbon Nanodots from Bamboo Leaves for Copper (II) Ion Detection. Sens. Actuat. B 2014, 196, 647–652. DOI: 10.1016/j.snb.2014.02.053.
  • Ganesan, S.; Kalimuthu, R.; Kanagaraj, T.; Kulandaivelu, R.; Nagappan, R.; Pragasan, L. A.; Ponnusamy, V. K. Microwave-Assisted Green Synthesis of Multi-Functional Carbon Quantum Dots as Efficient Fluorescence Sensor for Ultra-Trace Level Monitoring of Ammonia in Environmental Water. Environ. Res. 2022, 206, 112589. DOI: 10.1016/j.envres.2021.112589.
  • Madhi, A.; Shirkavand Hadavand, B. Fluorescent Epoxy-Graphene Quantum Dots Nanocomposites: Synthesis and Study of Properties. Polym.-Plast. Technol. Mater. 2022, 61, 117–130. DOI: 10.1080/25740881.2021.1959929.
  • Madhi, A. Smart Epoxy/Polyurethane/Carbon Quantum Dots Hybrid Coatings: Synthesis and Study of UV-Shielding, Viscoelastic, and Anti-Corrosive Properties. Polym.-Plast. Technol. Mater. 2023, 62, 403–418. DOI: 10.1080/25740881.2022.2116342.
  • Madhi, A.; Shirkavand Hadavand, B. Bio-Based Surface Modification of Wool Fibers by Chitosan-Graphene Quantum Dots Nanocomposites. Iran J. Chem Chem Eng 2022, 41, 2202–2212. DOI: 10.30492/IJCCE.2021.527475.4657.
  • Qing, W.; Chen, K.; Yang, Y.; Wang, Y.; Liu, X. Cu2+-Doped Carbon Dots as Fluorescence Probe for Specific Recognition of Cr(VI) and its Antimicrobial Activity. Microchem. J. 2020, 152, 104262. DOI: 10.1016/j.microc.2019.104262.
  • Zhao, P.; Zhang, Q.; Cao, J.; Qian, C.; Ye, J.; Xu, S.; Zhang, Y.; Li, Y. Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials (Basel) 2022, 12, 1528. DOI: 10.3390/nano12091528.
  • Zhao, D.; Huang, Y.; Ouyang, H.; Shi, B.; Li, S.; Chen, S.; Zhao, S. Facile Preparation of Cu-Doped Carbon Dots for Naked-Eye Discrimination of Phenylenediamine Isomers and Highly Sensitive Ratiometric Fluorescent Detection of H2O2. Talanta 2022, 239, 123110. DOI: 10.1016/j.talanta.2021.123110.
  • Wang, L.; Zheng, S.; Lu, L.; Li, C.; Wang, F. A Dual-Mode Ratiometric Fluorescence and Smartphone-Assisted Colorimetric Sensing Platform Based on Bifunctional Fe, Co-CQD for Glucose Analysis at Physiological pH. Anal. Chim. Acta. 2023, 1239, 340701. DOI: 10.1016/j.aca.2022.340701.
  • Hao, Y.; Song, Y.; Li, T.; Tuo, Y.; Tian, M.; Chai, F. Controllable Synthesis of Yellow Emissive Carbon Dots by Mild Heating Process and Their Utility as Fluorescent Test Paper for Detection of Mercury(II) Ions Assistants by Smartphone. J. Environ. Chem. Eng. 2023, 11, 109863. DOI: 10.1016/j.jece.2023.109863.
  • Wang, L.; Liu, X.; Qi, P.; Sun, J.; Jiang, S.; Li, H.; Gu, X.; Zhang, S. Enhancing the Thermostability, UV Shielding and Antimicrobial Activity of Transparent Chitosan Film by Carbon Quantum Dots Containing N/P. Carbohydr. Polym. 2022, 278, 118957. DOI: 10.1016/j.carbpol.2021.118957.
  • Nie, X.; Wu, S.; Mensah, A.; Lu, K.; Wei, Q. Carbon Quantum Dots Embedded Electrospun Nanofibers for Efficient Antibacterial Photodynamic Inactivation. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110377. DOI: 10.1016/j.msec.2019.110377.
  • Madhi, A. Green Fluorescent Unsaturated Polyester/Graphitic Carbon Nitride Quantum Dots Nanocomposites: Preparation and Study of UV-Resistance, Mechanical and Viscoelastic Properties. J. Compos. Mater. 2023, 57, 2437–2450. DOI: 10.1177/00219983231173480.
  • Madhi, A.; Shirkavand Hadavand, B. UV Protective Bio-Based Epoxy/Carbon Quantum Dots Nanocomposite Coatings: Synthesis and Investigation of Properties. J. Compos. Mater. 2022, 56, 2201–2210. DOI: 10.1177/00219983221092009.
  • Hu, Y.; Guan, R.; Zhang, S.; Fan, X.; Liu, W.; Zhang, K.; Shao, X.; Li, X.; Yue, Q. A Convenient Fluorescence Sensor of Tetracycline Based on B, N Codoped Carbon Dots/Polymer Composite Film. Food Chem. 2022, 372, 131287. DOI: 10.1016/j.foodchem.2021.131287.
  • Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. DOI: 10.1007/s12274-014-0644-3.
  • Xu, J.; Wang, Y.; Sun, L.; Qi, Q.; Zhao, X. Chitosan and κ-Carrageenan-Derived Nitrogen and Sulfur Co-Doped Carbon Dots “On–Off–On” Fluorescent Probe for Sequential Detection of Fe3+ and Ascorbic Acid. Int. J. Biol. Macromol. 2021, 191, 1221–1227. DOI: 10.1016/j.ijbiomac.2021.09.165.
  • Zhao, S.; Song, X.; Chai, X.; Zhao, P.; He, H.; Liu, Z. Green Production of Fluorescent Carbon Quantum Dots Based on Pine Wood and its Application in the Detection of Fe3+. J. Clean. Prod. 2020, 263, 121561. DOI: 10.1016/j.jclepro.2020.121561.
  • Sabarinathan, D.; Sharma, A. S.; Agyekum, A. A.; Sabapathy, M.; Murugavelu, P. C.; Ali, S.; Li, H.; Hassan, H.; Chen, Q. Thunnus Albacares Protein-Mediated Synthesis of Water-Soluble Copper Nanoclusters as Sensitive Fluorescent Probe for Ferric Ion Detection. J. Mol. Struct. 2022, 1254, 132333. DOI: 10.1016/j.molstruc.2022.132333.
  • Venugopalan, P.; Vidya, N. Microwave-Assisted Green Synthesis of Carbon Dots Derived from Wild Lemon (Citrus Pennivesiculata) Leaves as a Fluorescent Probe for Tetracycline Sensing in Water. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2023, 286, 122024. DOI: 10.1016/j.saa.2022.122024.
  • Gehlen, M. H. The Centenary of the Stern–Volmer Equation of Fluorescence Quenching: From the Single Line Plot to the SV Quenching Map. J. Photochem. Photobiol. C 2020, 42, 100338. DOI: 10.1016/j.jphotochemrev.2019.100338.
  • Madhi, A.; Shirkavand Hadavand, B.; Madhi, A. Environmentally Friendly g-C3N4/Carbon Quantum Dots Nanocomposites as Fluorescent and Anti-Spoofing Inks. Fullerenes Nanotubes Carbon Nanostruct. 2023, 31, 953–960. DOI: 10.1080/1536383X.2023.2226272.
  • Rasheed, T. Carbon Dots as Potential Greener and Sustainable Fluorescent Nanomaterials in Service of Pollutants Sensing. Trends Anal. Chem. 2023, 158, 116841. DOI: 10.1016/j.trac.2022.116841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.