40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization, and combustion properties of NGO/GF/B composite system

, , &
Received 22 Feb 2024, Accepted 04 Apr 2024, Published online: 15 Apr 2024

References

  • Pang, W. Q.; Yetter, R. A.; DeLuca, L. T.; Zarko, V.; Gany, A.; Zhang, X. H. M. Boron-Based Composite Energetic Materials (B-CEMs): Preparation, Combustion and Applications. Prog. Energy Combust. Sci. 2022, 93, 101038–101091. DOI: 10.1016/j.pecs.2022.101038.
  • Gany, A. Thermodynamic Limitation on Boron Energy Realization in Ramjet Propulsion. Acta Astron. 2014, 98, 128–132. DOI: 10.1016/j.actaastro.2014.01.023.
  • Jiang, Y.; Dincer, Y. N. E.; Barker, K. P.; Baek, J.; Xia, Y.; Zheng, X. Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. ACS Appl. Mater. Interfaces 2021, 13, 28908–28915. DOI: 10.1021/acsami.1c06727.
  • Wang, S. J.; Wang, D.; Chen, P.; Yan, S.; Jiao, Q. J.; Guo, X. Y. Preparation and Characterization of Al@TKX-50@NC Composite Microspheres by Electrospray. Mater. Chem. Phys. 2023, 305, 127910. DOI: 10.1016/j.matchemphys.2023.127910.
  • Trache, D.; Klapötke, T. M.; Maiz, L.; Abd, E. M.; DeLuca, L. T. Recent Advances in New Oxidizers for Solid Rocket Propulsion. Green Chem. 2017, 19, 4711–4736. DOI: 10.1039/C7GC01928A.
  • Li, X. L.; Wang, D. H.; Liu, Q. J. Energy Output Characteristics and Power Ability of HMX-Based Explosives Containing B/Al. Chin. J. Energy Mater. 2021, 29, 948–956. DOI: 10.11943/CJEM2021165.
  • Padwal, M. B.; Castaneda, D. A.; Natan, B. Hypergolic Combustion of Boron Based Propellants. Proc. Combust. Inst. 2021, 38, 6703–6711. DOI: 10.1016/j.proci.2020.06.116.
  • Deng, P.; Chen, P. W; Fang, H.; Liu, R.; Guo, X. Y. The Combustion Behavior of Boron Particles by Using Molecular Perovskite Energetic Materials as High-Energy Oxidants. Combust. Flame 2022, 241, 112118. DOI:10.1016/j.combustflame.2022.112118.
  • Gad, M. S.; Yehia, K. A. A.; Abdelhakeem, A. A. Effect of Multi Carbon Nanosheet on Diesel Engine Performance and Emissions. Fuller. Nanotub. Carbon Nanostruct. 2018, 26, 722–728. DOI: 10.1080/1536383X.2018.1485660.
  • Gad, M. S.; Gadow, S. I. Enhancement of Combustion Characteristics and Emissions Reductions of a Diesel Engine Using Biodiesel and Carbon Nanotube. Fuller. Nanotub. Carbon Nanostruct. 2020, 29, 267–279. DOI: 10.1080/1536383X.2020.1837779.
  • Sakthivadivel, D.; Kumar, P. G.; Stephen, S.; Vigneswaran, V. S.; Iniyan, S. Experimental Investigation of Doped MWCNTs on Biodiesel for Enhancement of the Performance and Exhaust Emissions in a Diesel Engine. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 358–366. DOI: 10.1080/1536383X.2019.1574761.
  • Jiang, Y.; Deng, S.; Hong, S. W.; Tiwari, S. C.; Chen, H.; Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P.; Zachariah, M. R.; Zheng, X. L. Synergistically Chemical and Thermal Coupling between Graphene Oxide and Graphene Fluoride for Enhancing Aluminum Combustion. ACS Appl. Mater. Interfaces 2020, 12, 7451–7458. DOI: 10.1021/acsami.9b20397.
  • Jiang, Y.; Deng, S.; Hong, S.; Zhao, J.; Huang, S.; Wu, C. C.; Gottfried, J. L.; Nomura, K.; Li, Y.; Tiwari, S.; et al. Energetic Performance of Optically Activated Aluminum/Graphene Oxide Composites. ACS Nano 2018, 12, 11366–11375. DOI: 10.1021/acsnano.8b06217.
  • Ju, J. M.; Wang, G. F.; Kim, D. H.; Yu, T. C.; Pak, K. S. The Enhanced and Polarized Raman Spectra on the Spherical Aluminum Powders Encapsulated within Graphene Nanosheets. Fuller. Nanotub. Carbon Nanostruct. 2019, 27, 279–288. DOI: 10.1080/1536383X.2018.1480477.
  • Chesnokov, V. V.; Chichkan, A. S.; Gerasimov, E. Y. Effect of Synthesis Conditions on the Properties of Graphene Doped with Nitrogen Atoms. Fuller. Nanotub. Carbon Nanostruct. 2022, 30, 10–14. DOI: 10.1080/1536383X.2021.1994553.
  • Tang, G.; Wang, H.; Chen, C. Y.; Xu, Y. B.; Chen, D. P.; Wang, D. L.; Luo, Y. J.; Li, X. Y. Thermal Decomposition of Nano Al-Based Energetic Composites with Fluorinated Energetic Polyurethane Binders: Experimental and Theoretical Understandings for Enhanced Combustion and Energetic Performance. RSC Adv. 2022, 12, 24163–24171. DOI: 10.1039/d2ra03781e.
  • Koch, E. C. Metal/Fluorocarbon Pyrolants: VI. Combustion Behaviour and Radiation Properties of Magnesium/Poly(Carbon Monofluoride) Pyrolant. Propellants Explos. Pyrotech. 2006, 30, 209–215. DOI: 10.1002/prep.200500007.
  • Sippel, T. R.; Son, S. F.; Groven, L. J. Modifying Aluminum Reactivity with Poly(Carbon Monofluoride) via Mechanical Activation. Propellants Explos. Pyrotech. 2013, 38, 321–326. DOI: 10.1002/prep.201200202.
  • Jiang, Y.; Demko, A. R.; Baek, J.; Shi, X.; Vallez, L.; Ning, R.; Zheng, X. L. Facilitating Laser Ignition and Combustion of Boron with a Mixture of Graphene Oxide and Graphite Fluoride. Appl. Energy Combust. Sci. 2020, 1–4, 100013. DOI: 10.1016/j.jaecs.2020.100013.
  • Yu, L. Investigation on Functionalized Graphene with Energetic Groups and Its Energy Performance; Beijing Institute of Technology: Beijing, 2015.
  • Yuan, S.; Li, Z. Q.; Luo, Q. P.; Duan, X. H.; Pei, C. H. Preparation and Thermal Decomposition Properties of Nitrated Graphene Oxide (NGO)/RDX Nano-Energetic Composites. J. Therm. Anal. Calorim. 2019, 139, 1671–1679. DOI: 10.1007/s10973-019-08613-x.
  • Deng, S.; Jiang, Y.; Huang, S.; Shi, X.; Zhao, J.; Zheng, X. L. Tuning the Morphological, Ignition and Combustion Properties of Micron-Al/CuO Thermites through Different Synthesis Approaches. Combust. Flame 2018, 195, 303–310. DOI: 10.1016/j.combustflame.2018.04.028.
  • Wang, J.; Mao, Y. F.; Chen, J.; Li, Z. J.; Wang, J.; Nie, F. D. Surface Engineering Boron/Graphite Fluoride Composite with Enhanced Ignition and Combustion Performances. Fuel 2022, 323, 124374. DOI: 10.1016/j.fuel.2022.124374.
  • Huang, S.; Pan, M.; Deng, S.; Jiang, Y.; Zhao, J.; Levy-Wendt, B.; Tang, S. K. Y.; Zheng, X. Modified Micro-Emulsion Synthesis of Highly Dispersed Al/PVDF Composites with Enhanced Combustion Properties. Adv. Eng. Mater. 2019, 21, 1801330., DOI: 10.1002/adem.201801330.
  • Young, G.; Roberts, C. W.; Stoltz, C. A. Ignition and Combustion Enhancement of Boron with Polytetrafluoroethylene. J. Propul. Power 2015, 31, 386–392. DOI: 10.2514/1.B35390.
  • Qin, Y.; Yu, H. M.; Wang, D. Q.; Song, Y.; Li, F. S.; Liu, J. Preparation and Characterization of Energetic Composite Films with Mutual Reactions Based on B/PVDF Mosaic Structure. Chem. Eng. J. 2022, 451, 138792. DOI:10.1016/j.cej.2022.138792.
  • Koch, E. C. Metal/Fluorocarbon Pyrolants: V. Theoretical Evaluation of the Combustion Performance of Metal/Fluorocarbon Pyrolants Based on Strained Fluorocarbons. Propellants Explos. Pyrotech. 2004, 29, 9–18. DOI: 10.1002/prep.200400029.
  • Narasaki, M.; Wang, H.; Nishiyama, T.; Ikuta, T.; Takahashi, K. Experimental Study on Thermal Conductivity of Free-Standing Fluorinated Single-Layer Graphene. Appl. Phys. Lett. 2017, 111, 093103. DOI: 10.1063/1.5001169.
  • Brown, R. C.; Kolb, C. E.; Yetter, R. A.; Dryer, F. L.; Rabitz, H. Kinetic Modeling and Sensitivity Analysis for B/H/O/C/F Combination Systems. Combust. Flame 1995, 101, 221–238. DOI: 10.1016/0010-2180(94)00209-B.
  • Zhang, W.; Luo, Q.; Duan, X.; Zhou, Y.; Pei, C. Nitrated Graphene Oxide and Its Catalytic Activity in Thermal Decomposition of Ammonium Perchlorate. Mater. Res. Bull. 2014, 50, 73–78. DOI: 10.1016/j.materresbull.2013.10.023.
  • Guan, F. Y.; Yu, L.; Ren, H.; Jiao, Q. J.; Liu, J. Synthesis of Nitrified Graphene Oxide and its Catalytic Activity for Ammonium Perchlorate Decomposition. Acta Armamentarii 2020, 41, 1323–1329. DOI: 10.3969/j.issn.1000-1093.2020.07.009.
  • Tsyshevsky, R. V.; Rashkeev, S. N.; Kuklja, M. M. Defect-Induced Decomposition of Energetic Nitro Compounds at MgO Surface. Surf. Sci. 2022, 722, 122085. DOI: 10.1016/j.susc.2022.122085.
  • Brill, T. B.; James, K. J. Thermal Decomposition of Energetic Materials. 62. Reconciliation of the Kinetics and Mechanisms of TNT on the Time Scale from Microseconds to Hours. J. Phys. Chem. 1993, 97, 8759–8763. DOI: 10.1021/j100136a018.
  • Kang, W. Z.; Li, S. Y. Preparation of Fluorinated Graphene to Study Its Gas Sensitivity. RSC Adv. 2018, 8, 23459–23467. DOI: 10.1039/c8ra03451f.
  • Ding, X. Y.; Shu, Y. J.; Chen, Z. Q.; Liu, N.; Gou, B. W.; Zhang, J. G.; Wu, M. J.; Xie, G.; Dang, T. T. Coating of LiBH4 and Its Effect on the Decomposition for RDX and AP. Cent. Eur. J. Energy Mater. 2017, 14, 134–151. DOI: 10.22211/cejem/67678.
  • Ding, X. Y.; Shu, Y. J.; Xu, H. T.; Chen, Z. Q. Study on Thermal Behaviour of AP/LiBH4 Energetic System. Propellants Explos. Pyrotech. 2018, 43, 267–273. DOI: 10.1002/prep.201700033.
  • Xiao, X.; Zhang, Z.; Cai, L.; Li, Y.; Yan, Z.; Wang, Y. The Excellent Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate Using Porous CuCo2O4 Synthesized by Template-Free Solution Combustion Method. J. Alloy Compd. 2019, 797, 548–557. DOI: 10.1016/j.jallcom.2019.05.074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.