135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pressure Swing Distillation: Heat Integration and Economics

& ORCID Icon
Received 31 Jul 2023, Accepted 10 Jan 2024, Published online: 30 Jan 2024

REFERENCES

  • Sholl, D. S.; Lively, R. P. S. C. Seven Chemical Separations to Change the World. Nature. 2016, 532(7600), 435–437. DOI: 10.1038/532435a.
  • Mahdi, T.; Ahmad, A.; Nasef, M. M.; Ripin, A. State-Of-The-Art Technologies for Separation of Azeotropic Mixtures. Sep. Purif. Rev. 2015, 44(4), 308–330. DOI: 10.1080/15422119.2014.963607.
  • Luyben, W. L. Pressure-Swing Distillation for Minimum- and Maximum-Boiling Homogeneous Azeotropes. Ind. Eng. Chem. Res. 2012, 51(33), 10881–10886. DOI: 10.1021/ie3002414.
  • Yu, H.; Ye, Q.; Xu, H.; Zhang, H.; Dai, X. Design and Control of Dividing-Wall Column for Tert -Butanol Dehydration System via Heterogeneous Azeotropic Distillation. Ind. Eng. Chem. Res. 2015, 54(13), 3384–3397. DOI: 10.1021/ie504325g.
  • Deorukhkar, O. A.; Deogharkar, B. S.; Mahajan, Y. S. Purification of Tetrahydrofuran from Its Aqueous Azeotrope by Extractive Distillation: Pilot Plant Studies. Chem. Eng. And Processing: Process Intensif. 2016, 105, 79–91. DOI: 10.1016/j.cep.2016.04.006.
  • Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K. A data bank for azeotropic data — status and applications. Fluid Phase Equilib. 1995, 103(1), 51–76. DOI: 10.1016/0378-3812(94)02569-M.
  • Liang, S.; Cao, Y.; Liu, X.; Li, X.; Zhao, Y.; Wang, Y.; Wang, Y. Insight into Pressure-Swing Distillation from Azeotropic Phenomenon to Dynamic Control. Chem. Engineer. Res. Design. 2017, 117, 318–335. DOI: 10.1016/j.cherd.2016.10.040.
  • Roscoe, H. E. XVIII.—On the Composition of the Aqueous Acids of Constant Boiling Point. Q. J. Chem. Soc. 1860, 13(2), 146–164. DOI: 10.1039/QJ8611300146.
  • Fulgueras, A. M.; Kim, D. S.; Cho, J. Modeling and Optimization Study of Pressure-Swing Distillation for the Separation Process of Acetone-Methanol Mixture with Vapor-Liquid Equilibrium Analysis. J. Chem. Eng. Japan. 2016, 49(2), 84–96. DOI: 10.1252/jcej.14we424.
  • Miao, G.; Zhuo, K.; Li, G.; Xiao, J. An Advanced Optimization Strategy for Enhancing the Performance of a Hybrid Pressure-Swing Distillation Process in Effective Binary-Azeotrope Separation. Sep. Sep. Purif. Technol. 2022, 282(PB), 120130. DOI: 10.1016/j.seppur.2021.120130.
  • Modla, G.; Lang, P. Removal and Recovery of Organic Solvents from Aqueous Waste Mixtures by Extractive and Pressure Swing Distillation. Ind. Eng. Chem. Res. 2012, 51(35), 11473–11481. DOI: 10.1021/ie300331d.
  • Qi, J.; Li, Y.; Xue, J.; Qiao, R.; Zhang, Z.; Li, Q. Comparison of Heterogeneous Azeotropic Distillation and Energy-Saving Extractive Distillation for Separating the Acetonitrile-Water Mixtures. Sep. Sep. Purifi. Technol. 2020, 238, 116487. DOI: 10.1016/j.seppur.2019.116487.
  • Neto, G. W. F.; Carneiro, L. O.; Vasconcelos, L. G. S.; Brito, K. D.; Brito, R. Pressure Control of Fully Heat-Integrated Pressure-Swing Distillation System Using Hot-Vapor Bypass Integral of Absolute Error. Sep. Purif. Technol. 2021, 275, 119168. DOI: 10.1016/j.seppur.2021.119168.
  • Adjay Sagar, A.; Rahman, I. Optimization of Pressure-Swing Distillation by Evolutionary Techniques: Separation of Ethanol-Water and Acetonitrile-Water Mixtures. Chem. Prod. Proc. Model. 2018, 13(2), 1–16. DOI: 10.1515/cppm-2017-0007.
  • Cao, Y.; Hu, J.; Jia, H.; Bu, G.; Zhu, Z.; Wang, Y. Comparison of Pressure-Swing Distillation and Extractive Distillation with Varied-Diameter Column in Economics and Dynamic Control. J. Proc. Cont. 2017, 49, 9–25. DOI: 10.1016/j.jprocont.2016.11.005.
  • Galanido, R. J.; Kim, D. S.; Cho, J. Separation of Methanol-Chloroform Mixture Using Pressure-Swing Distillation: Modeling and Optimization. Korean J. Chem. Eng. 2020, 37(5), 850–865. DOI: 10.1007/s11814-020-0505-6.
  • Li, X.; Ye, Q.; Li, J.; Liu, Y.; Yan, L.; Jian, X.; Zhang, J. Investigation on Energy-Efficient Heterogeneous Pressure-Swing Azeotropic Distillation for Recovery of Cyclohexane and Tert-Butanol from Industrial Effluent. Sep. Sep. Purif. Technol. 2023, 306(PB), 122705. DOI: 10.1016/j.seppur.2022.122705.
  • Luo, H.; Liang, K.; Li, W.; Li, Y.; Xia, M.; Xu, C. Comparison of Pressure-Swing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Ind. Eng. Chem. Res. 2014, 53(39), 15167–15182. DOI: 10.1021/ie502735g.
  • Zhang, Q.; Liu, M.; Zeng, A. Performance Enhancement of Pressure-Swing Distillation Process by the Combined Use of Vapor Recompression and Thermal Integration. J. Comp. Chem. Eng. 2019, 120, 30–45. DOI: 10.1016/j.compchemeng.2018.09.014.
  • Wang, Y.; Ma, K.; Yu, M.; Dai, Y.; Yuan, R.; Zhu, Z.; Gao, J. An Improvement Scheme for Pressure-Swing Distillation with and without Heat Integration Through an Intermediate Connection to Achieve Energy Savings. J. Comp. Chem. Eng. 2018, 119, 439–449. DOI: 10.1016/j.compchemeng.2018.09.012.
  • Battisti, R.; Claumann, C. A.; Marangoni, C.; MacHado, R. A. F. Optimization of Pressure-Swing Distillation for Anhydrous Ethanol Purification by the Simulated Annealing Algorithm. Brazilian J. Chem. Eng. 2019, 36(1), 453–469. DOI: 10.1590/0104-6632.20190361s20180133.
  • Lü, L.; Zhu, L.; Liu, H.; Li, H.; Sun, S. Comparison of Continuous Homogenous Azeotropic and Pressure-Swing Distillation for a Minimum Azeotropic System Ethyl Acetate/n - Hexane Separation. Chin. J. Chem. Eng. 2018, 26, 2023–2033. DOI: 10.1016/J.CJCHE.2018.02.002.
  • Yang, X. L.; Ward, J. D. Design of a Pressure-Swing Distillation Process for the Separation of N-Hexane and Ethyl Acetate Using Simulated Annealing; Elsevier Masson SAS, 2018. DOI: 10.1016/B978-0-444-64241-7.50015-X.
  • Luo, B.; Feng, H.; Sun, D.; Zhong, X. Control of Fully Heat-Integrated Pressure Swing Distillation for Separating Isobutyl Alcohol and Isobutyl Acetate. Chem. Eng. Proces.: Process Intensif. 2016, 110, 9–20. DOI: 10.1016/j.cep.2016.09.019.
  • Zhai, J.; Chen, X.; Sun, X.; Xie, H. Economically and Thermodynamically Efficient Pressure-Swing Distillation with Heat Integration and Heat Pump Techniques. App. Therm. Eng. 2023, 218, 119389. DOI: 10.1016/j.applthermaleng.2022.119389.
  • Qin, Y.; Zhuang, Y.; Wang, C.; Zhang, L.; Liu, L.; Du, J. Multi-Objective Optimization and Comparison of the Entrainer-Assisted Pressure-Swing Distillation and Extractive Distillation Separation Sequences for Separating a Pressure-Insensitive Binary Azeotrope. Comp. Chem. Eng. 2022, 165, 107959. DOI: 10.1016/j.compchemeng.2022.107959.
  • Wang, Y.; Cui, P.; Zhang, Z. Heat-Integrated Pressure-Swing-Distillation Process for Separation of Tetrahydrofuran/Methanol with Different Feed Compositions. Ind. Eng. Chem. Res. 2014, 53(17), 7186–7194. DOI: 10.1021/ie500235f.
  • Wang, Y.; Zhang, Z.; Zhang, H.; Zhang, Q. Control of Heat Integrated Pressure-Swing-Distillation Process for Separating Azeotropic Mixture of Tetrahydrofuran and Methanol. Ind. Eng. Chem. Res. 2015, 54(5), 1646–1655. DOI: 10.1021/ie505024q.
  • Suo, X.; Ye, Q.; Li, R.; Dai, X.; Yu, H. The Partial Heat-Integrated Pressure-Swing Reactive Distillation Process for Transesterification of Methyl Acetate with Isopropanol. Chem. Eng. Proces.: Process Intensif. 2016, 107, 42–57. DOI: 10.1016/j.cep.2016.06.008.
  • Wang, K.; Li, J.; Liu, P.; Lian, M.; Du, T. Pressure Swing Distillation for the Separation of Methyl Acetate‐Methanol Azeotrope. Asia-Pacific J. Chem. Eng. 2019, 14(3), e2319. DOI: 10.1002/apj.2319.
  • Zhang, Z.; Zhang, Q.; Li, G.; Liu, M.; Gao, J. Design and Control of Methyl Acetate-Methanol Separation via Heat-Integrated Pressure-Swing Distillation. Chin. J. Chem. Eng. 2016, 24(11), 1584–1599. DOI: 10.1016/j.cjche.2016.06.013.
  • Yu, B.; Wang, Q.; Xu, C. Design and Control of Distillation System for Methylal/Methanol Separation. Part 2: Pressure Swing Distillation with Full Heat Integration. Ind. Eng. Chem. Res. 2012, 51(3), 1293–1310. DOI: 10.1021/ie201949q.
  • Li, C.; Song, Y.; Fang, J.; Liu, Y.; Su, W.; Hu, Y. Separation Process of Butanol-Butyl Acetate-Methyl Isobutyl Ketone System by the Analysis to Residual Curve and the Double Effect Pressure-Swing Distillation. Chin. J. Chem. Eng. 2017, 25(3), 274–277. DOI: 10.1016/j.cjche.2016.08.011.
  • Vaz Mangili, P.; Prata, D. M. Exergoenvironmental Analysis of Tetrahydrofuran/Ethanol Separation Through Extractive and Pressure-Swing Distillation. Chem. Prod Proc. Model. 2020, 15(4), 1–10. DOI: 10.1515/cppm-2019-0114.
  • Yang, A.; Su, Y.; Teng, L.; Jin, S.; Zhou, T.; Shen, W. Investigation of Energy-Efficient and Sustainable Reactive/pressure-Swing Distillation Processes to Recover Tetrahydrofuran and Ethanol from the Industrial Effluent. Sep. Purif. Technol. 2020, 250(250), 117210. DOI: https://doi.org/10.1016/j.seppur.2020.117210.
  • Ghuge, P. D.; Joshi, S. S.; Joshi, S. S. Comparative Analysis of Extractive and Pressure Swing Distillation for Separation of THF-Water Separation. J. Comp. Chem. Eng. 2017, 103, 188–200. DOI: 10.1016/j.compchemeng.2017.03.019.
  • Qasim, F.; Shin, J. S.; Cho, S. J.; Park, S. J. Optimizations and Heat Integrations on the Separation of Toluene and 1-Butanol Azeotropic Mixture by Pressure Swing Distillation. Sep. Sci. Technol. 2016, 51(2), 316–326. DOI: 10.1080/01496395.2015.1086378.
  • Zhang, Z.; Wang, Y.; Zhang, M.; Guang, C.; Li, M.; Gao, J. Energy-Saving Investigation of Pressure-Swing Distillation Strengthening Configurations for Benzene/Isobutanol Binary Azeotrope. Sep. Purif. Technol. 2022, 296(June), 121381. DOI: 10.1016/j.seppur.2022.121381.
  • Gao, X.; Zhu, B.; Ma, J.; Yang, D. A Combination of Pressure-Swing and Extractive Distillation for Separating Complex Binary Azeotropic System. Chem. Eng. Proc.: Process Intensif. 2017, 122, 269–276. DOI: 10.1016/j.cep.2017.10.012.
  • Iqbal, A.; Ahmad, S. A. Heat Integrated Process Design for Pressure Swing Distillation Columns. Indian J. Chem. Technol. 2019, 26(5), 449–453.
  • Li, X.; Zhao, Y.; Qin, B.; Zhang, X.; Wang, Y.; Zhu, Z. Optimization of Pressure-Swing Batch Distillation with and without Heat Integration for Separating Dichloromethane/Methanol Azeotrope Based on Minimum Total Annual Cost. Ind. Eng. Chem. Res. 2017, 56(14), 4104–4112. DOI: 10.1021/acs.iecr.7b00464.
  • Battisti, R.; Urruth, N. S.; Machado, R. A. F.; Marangoni, C. Optimization of Pressure-Swing Distillation for IC5-Methanol Azeotropic Mixture Purification. Proc. Integr. Optim. Sustain. 2020, 4(3), 255–263. DOI: 10.1007/s41660-020-00115-w.
  • Mao, W.; Cao, Y.; Shen, R.; Zhou, J.; Zhou, X.; Li, W. Heat Integrated Technology Assisted Pressure-Swing Distillation for the Mixture of Ethylene Glycol and 1,2-Butanediol. Sep. Purif. Technol. 2020, 241, 116740. DOI: 10.1016/j.seppur.2020.116740.
  • Yang, D.; Zhang, Q.; Zhang, Q.; Cui, C. Dynamics and Control of Electrified Pressure-Swing Distillation for Separating a Maximum-Boiling Azeotrope Featuring Small Pressure-Induced Shift. Sep. Purif. Technol. 2023, 312, 123360. DOI: 10.1016/j.seppur.2023.123360.
  • Luyben, W. L. Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone/Chloroform Separation. J. Comp. Chem. Eng. 2013, 50, 1–7. DOI: 10.1016/j.compchemeng.2012.10.014.
  • Li, W.; Shi, L.; Yu, B.; Xia, M.; Luo, J.; Shi, H.; Xu, C. New Pressure-Swing Distillation for Separating Pressure-Insensitive Maximum Boiling Azeotrope via Introducing a Heavy Entrainer: Design and Control. Ind. Eng. Chem. Res. 2013, 52(23), 7836–7853. DOI: 10.1021/ie400274d.
  • Salman, M.; Javed, N.; Liu, X.; He, M. Azeotrope Separation of Ethyl Propionate and Ethanol by Extractive Distillation and Pressure Swing Distillation Method. Sep. Purif. Technol. 2023, 311, 123361. DOI: 10.1016/j.seppur.2023.123361.
  • Shi, P.; Zhang, Q.; Zeng, A.; Ma, Y.; Yuan, X. Eco-Efficient Vapor Recompression-Assisted Pressure-Swing Distillation Process for the Separation of a Maximum-Boiling Azeotrope. Energy. 2020, 196, 117095. DOI: 10.1016/j.energy.2020.117095.
  • Luyben, W. L. Control of a Heat-Integrated Pressure-Swing Distillation Process for the Separation of a Maximum-Boiling Azeotrope. Ind. Eng. Chem. Res. 2014, 53(46), 18042–18053. DOI: 10.1021/ie502395h.
  • Luyben, W. L. Methanol/Trimethoxysilane Azeotrope Separation Using Pressure- Swing Distillation. Ind. Eng. Chem. Res. 2014, 53(13), 5590–5597. DOI: 10.1021/ie500043c.
  • Hegely, L.; Lang, P. Optimisation of the Higher Pressure of Pressure-Swing Distillation of a Maximum Azeotropic Mixture. Energy. 2023, 271, 126939. DOI: 10.1016/j.energy.2023.126939.
  • Ferchichi, M.; Hegely, L.; Lang, P. Economic and Environmental Evaluation of Heat Pump-Assisted Pressure-Swing Distillation of Maximum-Boiling Azeotropic Mixture. Energy. 2022, 239, 122608. DOI: 10.1016/j.energy.2021.122608.
  • Farsi, A.; Kayhan, Ö.; Chehade, G.; Dincer, I.; Natarer, G. F. Multiphase Flow Model and Experimental Study of Pressure Swing Distillation for Low Pressure Process of Hydrochloric/Water Separation in Hydrogen Production. J. Comp. Chem. Eng. 2020, 141, 141. DOI: 10.1016/j.compchemeng.2020.107020.
  • Kadam, R. S.; Nirukhe, A. B.; Parvatalu, D.; Yadav, G. D. Azeotropic Separation of HCl-Water by Pressure Swing Distillation: Steady State Simulation and Economic Optimization. SSRN Electro. J. 2020. DOI: 10.2139/ssrn.3707360.
  • Kadam, R. S.; Nirukhe, A. B.; Yadav, G. D. Heat Utilized Pressure Swing Distillation (PSD) Process for the Separation of the Maximum Boiling Azeotrope HCl and Water in the Cu-Cl Cycle. Chem. Eng. Proces.: Process Intensif. 2024, 196, 109616. DOI: 10.1016/j.cep.2023.109616.
  • Wang, Y.; Zhang, Z.; Xu, D.; Liu, W.; Zhu, Z. Design and Control of Pressure-Swing Distillation for Azeotropes with Different Types of Boiling Behavior at Different Pressures. J. Process Control. 2016, 42, 59–76. DOI: 10.1016/j.jprocont.2016.04.006.
  • Mahida, B.; Benyounes, H.; Shen, W. Process Analysis of Pressure-Swing Distillation for the Separation of Formic Acid–Water Mixture. Chem. Papers. 2020, 75(2), 599–609. No. 0123456789. DOI: 10.1007/s11696-020-01329-5.
  • Mahida, B.; Benyounes, H.; Shen, W. Process Analysis of Pressure-Swing Distillation for the Separation of Formic Acid–Water Mixture. Chem. Pap. 2021, 75(2), 599–609. DOI: https://doi.org/10.1007/s11696-020-01329-5.
  • Repke, J.-U.; Klein, A.; Bogle, D.; Wozny, G. Pressure Swing Batch Distillation for Homogeneous Azeotropic Separation. Chem. Engineer. Res. Design. 2007, 85(4), 492–501. DOI: 10.1205/cherd06092.
  • Modla, G. Pressure Swing Batch Distillation by Double Column Systems in Closed Mode. Comput. Chem. Eng. 2010, 34(10), 1640–1654. DOI: 10.1016/j.compchemeng.2010.02.037.
  • Modla, G.; Lang, P. Feasibility of New Pressure Swing Batch Distillation Methods. Chem. Eng. Sci. 2008, 63(11), 2856–2874. DOI: 10.1016/j.ces.2008.02.034.
  • Phimister, J. R.; Seider, W. D. S. Semicontinuous, Pressure-Swing Distillation. Eng. Chem. Res. 2000, 39(1), 122–130. DOI: 10.1021/ie9904302.
  • Iqbal, A.; Ahmad, S. A.; Ojasvi. Strategies for Separating Pressure Sensitive Binary Azeotropes. J. King Saud Uni.- Eng. Sci.2020, 34(2), 88–97. DOI: 10.1016/j.jksues.2020.08.001.
  • Shan, B.; Sun, D.; Zheng, Q.; Zhang, F.; Wang, Y.; Zhu, Z. Dynamic Control of the Pressure-Swing Distillation Process for THF/Ethanol/Water Separation with and without Thermal Integration. Sep. Sep. Purif. Technol. 2021, 268, 118686. DOI: 10.1016/j.seppur.2021.118686.
  • Knapp, J. P.; Doherty, M. F. A New Pressure-Swing-Distillation Process for Separating Homogeneous Azeotropic Mixtures. Ind. Eng. Chem. Res. 1992, 31(1), 346–357. DOI: 10.1021/ie00001a047.
  • Zhang, L.; Liu, J.; Li, X.; Li, H.; Jiang, B.; Xiao, X. Separations of Different Binary Hydrocarbon Mixtures Using Pressure Swing Thermally Coupled Distillation Process. Sep. Sep. Sci. Technol. 2015, 50(1), 148–157. DOI: 10.1080/01496395.2014.948000.
  • Liu, Z.-Y.; Jobson, M. The Effect of Operating Pressure on Distillation Column Throughput. Comput. Chem. Eng. 1999, 23, S831–S834. DOI: 10.1016/S0098-1354(99)80204-X.
  • Luo, B.; Feng, H.; Sun, D.; Zhong, X. Control of Fully Heat-Integrated Pressure Swing Distillation for Separating Isobutyl Alcohol and Isobutyl Acetate. Chem. Eng. Process. 2016, 110, 9–20. DOI: 10.1016/j.cep.2016.09.019.
  • Lv, L.; Li, H.; Zhang, Z.; Huang, H. Comparison of the Economy and Controllability of Pressure Swing Distillation with Two Energy-Saving Modes for Separating a Binary Azeotrope Containing Lower Alcohols. Processes 2019, 7(10), 730. DOI: https://doi.org/10.3390/pr7100730.
  • Jana, A. K. Heat Integrated Distillation Operation. Appl. Energy. 2010, 87(5), 1477–1494. DOI: 10.1016/j.apenergy.2009.10.014.
  • Nakaiwa, M.; Huang, K.; Endo, A.; Ohmori, T.; Akiya, T.; Takamatsu, T. Internally Heat-Integrated Distillation Columns: A Review. Chem. Eng. Res. Design. 2003, 81(1), 162–177. DOI: 10.1205/026387603321158320.
  • Luyben, W. L.; Chien, I. Design and Control of Distillation Systems for Separating Azeotropes; Wiley: New York, 2010. DOI: 10.1002/9780470575802.
  • Luyben, W. L. Distillation Design and Control Using Aspen Simulation; John Wiley & Sons: New York, 2013. DOI: 10.1002/9781118510193.
  • Wade, J.; Merriman, R. W. CIV.—Influence of Water on the Boiling Point of Ethyl Alcohol at Pressures Above and Below the Atmospheric Pressure. J. Chem. Soc. Trans. 1911, 99, 997–1011.
  • Malesiński, W. Azeotropy and Other Theoretical Problems of Vapour-Liquid Equilibrium; Interscience Publishers: Geneva, Switzerland, 1965.
  • Gmehling, J.; Kleiber, M.; Kolbe, B.; Rarey, J. Chem. Thermodynamics for Process Simulation; John Wiley & Sons: New York, 2019.
  • Jantzen, E.; Swietoslawski, W. Azeotropy and Polyazeotropy; Wiley-VCH verlag Gmbh: Berlin, West Germany, 1966.
  • Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K.; Pereira Nunes, S.; Peinemann, K. Azeotropic Data; VCH-Verlag-Ges: Berlin, Germany, 1994.
  • Frank, T. C. Break Azeotropes with Pressure-Sensitive Distillation (Vol 93, Pg 52, 1997). Chem. Eng. Progress. 1997, 93(5), 10.
  • Ma, Y.; Cui, P.; Wang, Y.; Zhu, Z.; Wang, Y.; Gao, J. A Review of Extractive Distillation from an Azeotropic Phenomenon for Dynamic Control. Chin. J. Chem. Eng. 2019, 27(7), 1510–1522. DOI: 10.1016/j.cjche.2018.08.015.
  • Patel, S. J.; Dedy, N.; Sam Mannan QSPR, M. Flash Point Prediction of Solvents Using Topological Indices for Application in Computer Aided Molecular Design. Ind. Eng. Chem. Res. 2010, 48(15), 8282–8287. DOI: 10.1021/ie101378h.
  • Liang, G.; Xu, J.; Liu, L. QSPR Analysis for Melting Point of Fatty Acids Using Genetic Algorithm Based Multiple Linear Regression (GA-MLR). Fluid Phase Equilib. 2013, 353, 15–21. DOI: 10.1016/j.fluid.2013.06.008.
  • Abooali, D.; Sobati, M. A. Novel Method for Prediction of Normal Boiling Point and Enthalpy of Vaporization at Normal Boiling Point of Pure Refrigerants: A QSPR Approach. Int. J. Refrigeration. 2014, 40, 282–293. DOI: 10.1016/j.ijrefrig.2013.12.007.
  • Ma, Y.; Ma, K.; Wang, H.; Geng, X.; Gao, J.; Zhu, Z.; Wang, Y. QSPR Modeling of Azeotropic Temperatures and Compositions for Binary Azeotropes Containing Lower Alcohols Using a Genetic Function Approximation. Chin. J. Chem. Eng. 2019, 27(4), 835–844. DOI: 10.1016/j.cjche.2018.06.031.
  • Katritzky, A. R.; Stoyanova-Slavova, I. B.; Tämm, K.; Tamm, T.; Karelson, M. Application of the QSPR Approach to the Boiling Points of Azeotropes. J. Phys. Chem. A. 2011, 115(15), 3475–3479. DOI: 10.1021/jp104287p.
  • Faramarzi, Z.; Abbasitabar, F.; Zare-Shahabadi, V.; Jahromi, H. J. Novel Mixture Descriptors for the Development of Quantitative Structure−property Relationship Models for the Boiling Points of Binary Azeotropic Mixtures. J. Mol. Liquids. 2019, 296, 111854. DOI: 10.1016/j.molliq.2019.111854.
  • Capps, R. W. Consider the Ultimate Capacity of Fractionation Trays. Chem. Eng. Progress; (United States) 1993, 89, 3. https://www.osti.gov/biblio/5938219
  • Modla, G.; Lang, P. Separation of an Acetone−methanol Mixture by Pressure-Swing Batch Distillation in a Double-Column System with and without Thermal Integration. Ind. Eng. Chem. Res. 2010, 49(8), 3785–3793. DOI: 10.1021/ie9019352.
  • Zhu, Z.; Wang, L.; Ma, Y.; Wang, W.; Wang, Y. Separating an Azeotropic Mixture of Toluene and Ethanol via Heat Integration Pressure Swing Distillation. Comp. Chem. Eng. 2015, 76, 137–149. DOI: 10.1016/j.compchemeng.2015.02.016.
  • Cui, C.; Liu, S.; Sun, J. Optimal Selection of Operating Pressure for Distillation Columns. Chem. Eng. Res. Design. 2018, 137, 291–307. DOI: 10.1016/j.cherd.2018.07.028.
  • Risco, A.; Plesu, V.; Heydenreich, J. A.; Bonet, J.; Bonet-Ruiz, A.-E.; Calvet, A.; Iancu, P.; Llorens, J. Pressure Selection for Non-Reactive and Reactive Pressure-Swing Distillation. Chem. Eng. Proces.: Process Intensif. 2019, 135, 9–21. DOI: 10.1016/j.cep.2018.11.005.
  • Luyben, W. L. Importance of Pressure-Selection in Pressure-Swing Distillation. Comp. Chem. Eng. 2021, 149, 107279. DOI: 10.1016/j.compchemeng.2021.107279.
  • Lescisin, M.; Jianu, O. A.; Rosen, M. A.; Pope, K. Azeotropic Distillation of Hydrochloric Acid in the Copper-Chlorine Cycle for Hydrogen Production. In 2017 IEEE International Conference on Smart Energy Grid Eng. (SEGE); IEEE, 2017; pp 322–329. 10.1109/SEGE.2017.8052819.
  • Wang, Y.; Zhang, Z.; Zhao, Y.; Liang, S.; Bu, G. Control of Extractive Distillation and Partially Heat-Integrated Pressure-Swing Distillation for Separating Azeotropic Mixture of Ethanol and Tetrahydrofuran. Ind. Eng. Chem. Res. 2015, 54(34), 8533–8545. DOI: 10.1021/acs.iecr.5b01642.
  • Fulgueras, A. M.; Poudel, J.; Kim, D. S.; Cho, J. Optimization Study of Pressure-Swing Distillation for the Separation Process of a Maximum-Boiling Azeotropic System of Water-Ethylenediamine. Korean J. Chem. Eng. 2016, 33(1), 46–56. DOI: 10.1007/s11814-015-0100-4.
  • Kim, K. W.; Shin, J. S.; Kim, S. H.; Hong, S. K.; Cho, J. H.; Park, S. J. A Computational Study on the Separation of Acetonitrile and Water Azeotropic Mixture Using Pressure Swing Distillation. J. Chem. Eng. Japan. 2013, 46(5), 347–352. DOI: 10.1252/jcej.12we252.
  • Ramshaw, C. The Incentive for Process Intensification. In BHR Group Conference Series Publication; Mechanical Eng. Publications Limited, London, 1995; Vol. 18, pp 1–4.
  • Luyben, W. L. Design and Control of a Pressure-Swing Distillation Process with Vapor Recompression. Chem. Eng. Proces.: Process Intensifation. 2018, 123, 174–184. DOI: 10.1016/j.cep.2017.09.020.
  • Kiss, A. A.; Flores Landaeta, S. J.; Infante Ferreira, C. A. Towards Energy Efficient Distillation Technologies – Making the Right Choice. Energy. 2012, 47(1), 531–542. DOI: 10.1016/j.energy.2012.09.038.
  • Ma, Y.; Luo, Y.; Yuan, X. Towards the Really Optimal Design of Distillation Systems: Simultaneous Pressures Optimization of Distillation Systems Based on Rigorous Models. Comp. Chem. Eng. 2019, 126, 54–67. DOI: 10.1016/j.compchemeng.2019.04.004.
  • Ma, Y.; Luo, Y.; Zhang, S.; Yuan, X. Simultaneous Optimization of Complex Distillation Systems and Heat Integration Using Pseudo-Transient Continuation Models. Comp. Chem. Eng. 2018, 108, 337–348. DOI: 10.1016/j.compchemeng.2017.10.004.
  • Ramapriya, G. M.; Selvarajah, A.; Jimenez Cucaita, L. E.; Huff, J.; Tawarmalani, M.; Agrawal, R. Short-Cut Methods versus Rigorous Methods for Performance-Evaluation of Distillation Configurations. Ind. Eng. Chem. Res. 2018, 57(22), 7726–7731. DOI: 10.1021/acs.iecr.7b05214.
  • Douglas, J. M. Conceptual Design of Chemical Processes; McGraw-Hill: New York, 1988.
  • Wang, Y.; Bu, G.; Wang, Y.; Zhao, T.; Zhang, Z.; Zhu, Z. Application of a Simulated Annealing Algorithm to Design and Optimize a Pressure-Swing Distillation Process. Comp. Chem. Eng. 2016, 95, 97–107. DOI: 10.1016/j.compchemeng.2016.09.014.
  • Li, J.; Wang, K.; Lian, M.; Li, Z.; Du, T. Process Simulation of the Separation of Aqueous Acetonitrile Solution by Pressure Swing Distillation. Processes. 2019, 7(7), 409. DOI: 10.3390/pr7070409.
  • Repke, J.; Klein, A. Continuous and Batch Process. Chem. Eng. 2005, 721–726. DOI: 10.1016/S1570-7946(05)80242-1.
  • Luyben, W. L. Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone/Chloroform Separation. Comp. Chem. Eng. 2013, 50, 1–7. DOI: 10.1016/j.compchemeng.2012.10.014.
  • Modla, G.; Lang, P. Comparison of Extractive and Pressure-Swing Batch Distillation for Acetone-Methanol Separation. Comp. Aid. Chem. Eng. 2011, 29, 382–386. DOI: 10.1016/B978-0-444-53711-9.50077-8.
  • Kiran, B.; Jana, A. K. Assessing the Performance Improvement of an Intensified Heat Integration Scheme: Reactive Pressure-Swing Distillation. Appl. Therm. Eng. 2015, 76, 509–520. DOI: 10.1016/j.applthermaleng.2014.11.053.
  • Fissore, D.; Pin, M.; Barresi, A. A. On the Use of Detailed Models in the MPC Algorithm: The Pressure-Swing Distillation Case. AichE. J. 2006, 52(10), 3491–3500. DOI: 10.1002/aic.10953.
  • Wang, Y.; Zhang, Z.; Xu, D.; Liu, W.; Zhu, Z. Design and Control of Pressure-Swing Distillation for Azeotropes with Different Types of Boiling Behavior at Different Pressures. J. Proc. Cont. 2016, 42, 59–76. DOI: 10.1016/j.jprocont.2016.04.006.
  • Wang, Y.; Cui, P.; Ma, Y.; Zhang, Z. Extractive Distillation and Pressure-Swing Distillation for THF/Ethanol Separation. J. Chem. Technol. Biotechnol. 2015, 90(8), 1463–1472. DOI: 10.1002/jctb.4452.
  • Luyben, W. L. Comparison of Flowsheets for THF/Water Separation Using Pressure-Swing Distillation. Comp. Chem. Eng. 2018, 115, 407–411. DOI: 10.1016/j.compchemeng.2018.04.023.
  • Zhang, Q.; Li, C.; Zeng, A.; Ma, Y.; Yuan, X. Dynamic Control Analysis of Partially Heat-Integrated Pressure-Swing Distillation for Separating a Maximum-Boiling Azeotrope. Sep. Purif. Technol. 2020, 230, 115853. DOI: 10.1016/j.seppur.2019.115853.
  • Zhang, Q.; Liu, M.; Li, C.; Zeng, A. Heat-Integrated Pressure-Swing Distillation Process for Separation of the Maximum-Boiling Azeotrope Diethylamine and Methanol. J. Taiwan Inst. Chem. Eng. 2018, 93, 644–659. DOI: 10.1016/j.jtice.2018.09.018.
  • Huang, K.; Shan, L.; Zhu, Q.; Qian, J. Adding Rectifying/Stripping Section Type Heat Integration to a Pressure-Swing Distillation (PSD) Process. App. Therm. Eng. 2008, 28(8–9), 923–932. DOI: 10.1016/j.applthermaleng.2007.07.003.
  • Mulia-Soto, J. F.; Flores-Tlacuahuac, A. Modeling, Simulation and Control of an Internally Heat Integrated Pressure-Swing Distillation Process for Bioethanol Separation. Comp. Chem. Eng. 2011, 35(8), 1532–1546. DOI: 10.1016/j.compchemeng.2011.03.011.
  • Zhu, L.; Hao, Q.; Zeng, X.; Zhang, C.; Yu, J.; Lv, L.; Zhou, Q. Control of Side-Stream Pressure-Swing Distillation and Extractive Distillation for Separating Azeotropic Mixture of Cyclohexane and Acetone. Comp. Chem. Eng. 2023, 172, 108166. DOI: 10.1016/j.compchemeng.2023.108166.
  • Kiran, B.; Jana, A. K. A Hybrid Heat Integration Scheme for Bioethanol Separation Through Pressure-Swing Distillation Route. Sep. Purif. Technol. 2015, 142, 307–315. DOI: 10.1016/j.seppur.2015.01.003.
  • Li, R.; Ye, Q.; Suo, X.; Dai, X.; Yu, H. Heat-Integrated Pressure-Swing Distillation Process for Separation of a Maximum-Boiling Azeotrope Ethylenediamine/Water. Chem. Eng. Res. Design. 2015, 5, 1–15. DOI: 10.1016/j.cherd.2015.10.038.
  • Cui, C.; Liu, S.; Sun, J. Optimal Selection of Operating Pressure for Distillation Columns Heavy Key. Chem. Eng. Res. Design. 2018, 7, 291–307. DOI: 10.1016/j.cherd.2018.07.028.
  • Li, R.; Ye, Q.; Suo, X.; Dai, X.; Yu, H. Heat-Integrated Pressure-Swing Distillation Process for Separation of a Maximum-Boiling Azeotrope Ethylenediamine/Water. Chem. Eng. Res. Design. 2016, 105, 1–15. DOI: 10.1016/j.cherd.2015.10.038.
  • Zhang, Q.; Liu, M.; Li, W.; Li, C.; Zeng, A. Heat-Integrated Triple-Column Pressure-Swing Distillation Process with Multi-Recycle Streams for the Separation of Ternary Azeotropic Mixture of Acetonitrile/Methanol/Benzene. Sep. Purif. Technol. 2019, 211, 40–53. DOI: 10.1016/j.seppur.2018.09.053.
  • Yang, A.; Sun, S.; Shi, T.; Xu, D.; Ren, J.; Shen, W. Energy-Efficient Extractive Pressure-Swing Distillation for Separating Binary Minimum Azeotropic Mixture Dimethyl Carbonate and Ethanol. Sep. Purif. Technol. 2019 May, 229. DOI: 10.1016/j.seppur.2019.115817.
  • Yang, A.; Sun, S.; Shi, T.; Xu, D.; Ren, J.; Shen, W. Energy-Efficient Extractive Pressure-Swing Distillation for Separating Binary Minimum Azeotropic Mixture Dimethyl Carbonate and Ethanol. Sep. Purif. Technol. 2019, 229, 115817. DOI: 10.1016/j.seppur.2019.115817.
  • Gadalla, M. A.; Olujic, Z.; Jansens, P. J.; Jobson, M.; Smith, R. Reducing CO2 Emissions and Energy Consumption of Heat-Integrated Distillation Systems. Env. Sci. Technol. 2005, 39(17), 6860–6870. DOI: 10.1021/es049795q.
  • Herrmann, I. T.; Moltesen, A. Does It Matter Which Life Cycle Assessment (LCA) Tool You Choose? – a Comparative Assessment of SimaPro and GaBi. J. Cleaner Prod. 2015, 86, 163–169. DOI: 10.1016/j.jclepro.2014.08.004.
  • Wang, Y.; Zhang, H.; Yang, X.; Shen, Y.; Chen, Z.; Cui, P.; Wang, L.; Meng, F.; Ma, Y.; Gao, J. Insight into Separation of Azeotrope in Wastewater to Achieve Cleaner Production by Extractive Distillation and Pressure-Swing Distillation Based on Phase Equilibrium. J. Cleaner Prod. 2020, 276, 124213. DOI: 10.1016/j.jclepro.2020.124213.
  • Kadam, R. S.; Yadav, G. D. Process Integration of Hydrolysis and Hydrogen Generation Processes in the Six-Step Cu-Cl Cycle for Green Hydrogen Production. Int. J. Hydrogen Energy. 2023, 49, 862–876. DOI: 10.1016/j.ijhydene.2023.07.321.
  • Zhang, Q.; Liu, M.; Li, C.; Zeng, A. Heat-Integrated Pressure-Swing Distillation Process for Separating the Minimum-Boiling Azeotrope Ethyl-Acetate and Ethanol. Sep. Purif. Technol. 2017, 189, 310–334. DOI: 10.1016/j.seppur.2017.08.016.
  • Cao, Y.; Li, M.; Wang, Y.; Zhao, T.; Li, X.; Zhu, Z.; Wang, Y. Effect of Feed Temperature on Economics and Controllability of Pressure-Swing Distillation for Separating Binary Azeotrope. Chem. Eng. Proces.: Process Intensif. 2016, 110, 160–171. DOI: 10.1016/j.cep.2016.10.011.
  • Ziegler, J. G.; Nichols, N. B. Optimum Settings for PID Controllers. Trans. ASME. 1942, 64, 759–768.
  • Luyben, W. L. Tuning Proportional Integral Derivative Controllers for Integrator/Deadtime Processes, Ind. Eng. Chem. Res. 1996, 5885(96), 3480–3483. DOI: 10.1021/ie9600699.
  • Neto, G. W. F.; Brito, K. D.; Brito, R. P. Improving Control of Fully Heat-Integrated Pressure Swing Distillation Through Partially Flooded Reboiler/Condenser. Sep. Purif. Technol. 2023, 322, 124334. DOI: 10.1016/j.seppur.2023.124334.
  • Pavković, D.; Polak, S.; Zorc, D. PID Controller Auto-Tuning Based on Process Step Response and Damping Optimum Criterion. ISA Trans. 2014, 53(1), 85–96. DOI: 10.1016/j.isatra.2013.08.011.
  • Cao, Y.; Hu, J.; Jia, H.; Bu, G.; Zhu, Z.; Wang, Y. Comparison of Pressure-Swing Distillation and Extractive Distillation with Varied-Diameter Column in Economics and Dynamic Control. J. Process. Cont. 2017, 49, 9–25. DOI: 10.1016/j.jprocont.2016.11.005.
  • Yang, J.; Hou, Z.; Dai, Y.; Ma, K.; Cui, P.; Wang, Y.; Zhu, Z.; Gao, J. Dynamic Control Analysis of Interconnected Pressure-Swing Distillation Process with and without Heat Integration for Separating Azeotrope. Chin. J. Chem. Eng. 2021, 29, 67–76. DOI: 10.1016/j.cjche.2020.07.059.
  • Li, Y.; Jiang, Y.; Xu, C. Robust Control of Partially Heat-Integrated Pressure-Swing Distillation for Separating Binary Maximum-Boiling Azeotropes. Ind. Eng. Chem. Res. 2019, 58(6), 2296–2309. DOI: 10.1021/acs.iecr.8b05562.
  • Wang, C.; Zhang, Z.; Zhang, X.; Guang, C.; Gao, J. Comparison of Pressure-Swing Distillation with or without Crossing Curved-Boundary for Separating a Multiazeotropic Ternary Mixture. Sep. Purif. Technol. 2019, 220, 114–125. DOI: 10.1016/j.seppur.2019.03.047.
  • Cui, C.; Zhang, Q.; Zhang, X.; Sun, J.; Chien, I. L. Dynamics and Control of Thermal- versus Electrical-Driven Pressure-Swing Distillation to Separate a Minimum-Boiling Azeotrope. Sep. Sep. Purif. Technol. 2022, 280, 119839. DOI: 10.1016/j.seppur.2021.119839.
  • Sun, D.; Xu, Q.; Zhang, F.; Zhu, Z.; Wang, Y.; Cui, P.; Shan, B. Product Composition Control Based on Backpropagation Neural Network in Pressure-Swing Distillation Processes. Chem. Eng. Proces.: Process Intensif. 2023, 2022, 109224. DOI: 10.1016/j.cep.2022.109224.
  • Wang, Y.; Qi, P.; Yang, X.; Zhu, Z.; Gao, J.; Zhang, F. Exploration of a Heat-Integrated Pressure-Swing Distillation Process with a Varied-Diameter Column for Binary Azeotrope Separation. Chem. Eng. Com. 2019, 206(12), 1689–1705. DOI: 10.1080/00986445.2019.1570164.
  • Vatavuk, W. M. Updating the CE Plant Cost Index: Changing Ways of Building Plants are Reflected as This Widely Used Index is Brought into the 21st Century. (Eng. Practice). Chem. Eng 2002, 109, 62–70. https://link.gale.com/apps/doc/A82478514/AONE?u=googlescholar&sid=bookmark-AONE&xid=d8971c1c
  • Prifti, K.; Galeazzi, A.; Manenti, F. Design and Simulation of a Plastic Waste to Methanol Process: Yields and Economics. Ind. Eng. Chem. Res. 2023, 62(12), 5083–5096. DOI: 10.1021/acs.iecr.2c03929.
  • Junsittiwate, R.; Srinophakun, T. R.; Sukpancharoen, S. Techno-Economic, Environmental, and Heat Integration of Palm Empty Fruit Bunch Upgrading for Power Generation. Energy Sust. Devel. 2022, 66, 140–150. DOI: 10.1016/j.esd.2021.12.001.
  • Liu, J.; Yan, J.; Liu, W.; Kong, J.; Wu, Y.; Li, X.; Sun, L. Design and Multi-Objective Optimization of Reactive-Extractive Dividing Wall Column with Organic Rankine Cycles Considering Safety. Sep. Purif. Technol. 2022, 287, 120512. DOI: 10.1016/j.seppur.2022.120512.
  • Liu, J.; Gao, L.; Liu, X.; Ren, J.; Dong, M.; Sun, L. Evolutional Design and Plant-Wide Control for Dimethyl Ether Production by Combining Dynamic Process Intensification and Pervaporation Membranes. Ind. Eng. Chem. Res. 2022, 61(14), 4920–4936. DOI: 10.1021/acs.iecr.2c00100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.