51
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Purification Approaches of Biocatalyst Applied for Cellulosic Biomass Breakdown

ORCID Icon, , &
Received 02 Dec 2022, Accepted 21 Feb 2024, Published online: 27 Feb 2024

References

  • Kuhad, R. C.; Deswal, D.; Sharma, S.; Bhattacharya, A.; Jain, K. K.; Kaur, A.; Pletschke, B. I.; Singh, A.; Karp, M. Revisiting Cellulase Production and Redefining Current Strategies Based on Major Challenges. Renew. Sustain. Energy. Rev. 2016, 55, 249–272. DOI: 10.1016/j.rser.2015.10.132.
  • Kuhad, R. C.; Singh, A.; Eriksson, K. E. L. Microorganisms and Enzymes Involved in the Degradation of Plant Fiber Cell Walls. Biotechnology. In The Pulp And Paper Industry. 1997, 45–125. DOI: 10.1007/BFb0102072.
  • Beguin, P.; Aubert, J. P. The Biological Degradation of Cellulose. FEMS. Microbiol. Rev. 1994, 13(1), 25–58. DOI: 10.1111/j.1574-6976.1994.tb00033.x.
  • Himmel, M. E.; Ruth, M. F.; Wyman, C. E. Cellulase for Commodity Products from Cellulosic Biomass. Curr. Opin. Biotechnol. 1999, 10(4), 358–364. DOI: 10.1016/S0958-1669(99)80065-2.
  • Han, W.; He, M. The Application of Exogenous Cellulase to Improve Soil Fertility and Plant Growth Due to Acceleration of Straw Decomposition. Bioresources. Technol. 2010, 101(10), 3724–3731. DOI: 10.1016/j.biortech.2009.12.104.
  • Bhattacharya, A. S.; Bhattacharya, A.; Pletschke, B. I. Synergism of Fungal and Bacterial Cellulases and Hemicellulases: A Novel Perspective for Enhanced Bio-Ethanol Production. Biotechnol. Lett. 2015, 37(6), 1117–1129. DOI: 10.1007/s10529-015-1779-3.
  • Rajoka, M. I.; Parvez, S.; Malik, K. A. Cloning of Structural Genes for Beta-Glucosidase from Cellulomonas biazotea into Escherichia coli and Saccharomyces cerevisiae Using Shuttle Vector PBLU-D. Biotechnol. Lett. 1992, 14(11), 1001–1006. DOI: 10.1007/BF01021048.
  • Tsai, S. L.; Goyal, G.; Chen, W. Surface Display of a Functional Minicellulosome by Intracellular Complementation Using a Synthetic Yeast Consortium and Its Application to Cellulose Hydrolysis and Ethanol Production. Appl. Environ. Microbiol. 2010, 76(22), 7514–7520. DOI: 10.1128/AEM.01777-10.
  • Esterbauer, H.; Steiner, W.; Labudova, I.; Hermann, A.; Hayn, M. Production of Trichoderma Cellulase in Laboratory and Pilot Scale. Bioresources. Technol. 1991, 36(1), 51–65. DOI: 10.1016/0960-8524(91)90099-6.
  • Karmakar, M.; Ray, R. R. Current Trends in Research and Application of Microbial Cellulases. Res. J. Microbiol. 2011, 6(1), 41–53. DOI: 10.3923/jm.2011.41.53.
  • Jayasekara, S.; Ratnayake, R. Microbial Cellulases: An Overview and Applications. Cellulose. 2019, 22, 92–112. DOI: 10.5772/intechopen.84531.
  • https://www.marketresearchfuture.com/reports/industrial-enzymes-market-8094.
  • Kolbusz, M. A.; Di Falco, M.; Ishmael, N.; Marqueteau, S.; Moisan, M. C.; da Silva Baptista, C.; Powlowski, J.; Tsang, A. Transcriptome and Exoproteome Analysis of Utilization of Plant-Derived Biomass by Myceliophthora Thermophila. Fungal Genet. Biol. 2014, 72, 10–20. DOI: 10.1016/j.fgb.2014.05.006.
  • Levasseur, A.; Drula, E.; Lombard, V.; Coutinho, P. M.; Henrissat, B. Expansion of the Enzymatic Repertoire of the CAZy Database to Integrate Auxiliary Redox Enzymes. Biotechnol. Biofuels. 2013, 6(1), 1–14. DOI: 10.1186/1754-6834-6-41.
  • Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic. Acids. Res. 2014, 42(D1), 490–495. DOI: 10.1093/nar/gkt1178.
  • Woodward, J. Synergism in Cellulase Systems. Bioresources. Technol. 1991, 36(1), 67–75. DOI: 10.1016/j.biortech.2012.05.098.
  • ALinares-Pasten, J.; Andersson, M. N.; Karlsson, E. Thermostable Glycoside Hydrolases in Biorefinery Technologies. Curr. Biotechnol. 2014, 3(1), 26–44. DOI: 10.2174/22115501113026660041.
  • Lin, B.; Tao, Y. Whole-Cell Biocatalysts by Design. Microb. Cell Fact. 2017, 16(1), 1–12. DOI: 10.1186/s12934-017-0724-7.
  • Elsababty, Z. E.; Abdel-Aziz, S. H.; Ibrahim, A. M.; Guirgis, A. A.; Dawwam, G. E. Purification, Biochemical Characterization, and Molecular Cloning of Cellulase from Bacillus licheniformis Strain Z9 Isolated from Soil. J. Genet. Eng. Biotechnol. 2022, 20(1), 1–10. DOI: 10.1186/s43141-022-00317-4.
  • Chauve, M.; Mathis, H.; Huc, D.; Casanave, D.; Monot, F.; Ferreira, N. L. Comparative Analysis of Two Fungal β-Glucosidases. Biotechnol. Biofuels. 2010, 3(1), 1–8. DOI: 10.1186/1754-6834-3-3.
  • Chirico, W. J.; Brown, R. D., Jr. Purification and Characterization of a β-Glucosidase from Trichoderma reesei. Eur. J. Biochem. 1987, 165(2), 333–341. DOI: 10.1111/j.1432-1033.1987.tb11446.x.
  • Khadka, S.; Khadka, D.; Poudel, R. C.; Bhandari, M.; Baidya, P.; Sijapati, J.; Maharjan, J. Production Optimization and Biochemical Characterization of Cellulase from Geobacillus sp. KP43 Isolated from Hot Spring Water of Nepal. Biomed Res. Int. 2022, 2022, 1–22. DOI: 10.1155/2022/6840409.
  • Nisar, K.; Abdullah, R.; Kaleem, A.; Iqtedar, M.; Aftab, M.; Saleem, F. Purification, Characterization and Thermodynamic Analysis of Cellulases Produced from Thermomyces Dupontii and Its Industrial Applications. Saudi J. Biol. Sci. 2022, 29(12), 1–10. DOI: 10.1016/j.sjbs.2022.103483.
  • Shankar, T. S.; Balachandran, S.; Chinnathambi, C.; Nasif, A.; Alharbi, O.; A, S.; Park, S.; Baskar, K. Purification and Characterization of Carboxymethylcellulase from Bacillus pumilus EWBCM1 Isolated from Earthworm Gut (Eudrilus eugeniae). J. King Saud Univ. Sci. 2021, 33(1), 101261–101272. DOI: 10.1016/j.jksus.2020.101261.
  • Banerjee, S.; Maiti, T. K.; Roy, R. N. Production, Purification, and Characterization of Cellulase from Acinetobacter Junii GAC 16.2, a Novel Cellulolytic Gut Isolate of Gryllotalpa africana, and Its Effects on Cotton Fiber and Sawdust. Ann. Microbiol. 2020, 70(1), 1–16. DOI: 10.1186/s13213-020-01569-6.
  • Dehghanikhah, F.; Shakarami, J.; Asoodeh, A. Purification and biochemical characterization of alkalophilic cellulase from the symbiotic Bacillus subtilis BC1 of the leopard Moth, Zeuzera pyrina (L.) (Lepidoptera: Cossidae). Curr. Microbiol. 2020, 77(7), 1254–1261. DOI: 10.1007/s00284-020-01938-z.
  • Singh, J.; Sharma, A. Application of Response Surface Methodology to the Modeling of Cellulase Purification by Solvent Extraction. January 2012. Advances. In Bioscience.And Biotech. 2012, 03(4), 408–416. DOI: 10.4236/abb.2012.34058.
  • Yun, S. I.; Jeong, C. S.; Chung, D. K.; Choi, H. S. Purification and Some Properties of a β-Glucosidase from Trichoderma Harzianum Type C-4. Biosci. Biotechnol., Biochem. 2001, 65(9), 2028–2032. DOI: 10.1271/bbb.65.2028.
  • Sango, C.; Pathak, P.; Bhardwaj, N. K.; Dalal, S.; Sharma, J. Partial Purification of Bacterial Cellulo-Xylanolytic Enzymes and Their Application in Deinking of Photocopier Waste Paper. Environ. Sci. Pollut. Res. 2021, 28, 61317–61328. DOI: 10.1007/s11356-021-14709-5.
  • Shanmugarajah, M.; Kapilan, R. Purification and Characterization of Cellulase from Aspergillus Unguis Isolated from Decaying Coconut Wood. J. Agric. Sci. 2021, 15(1), 14–27. DOI: 10.4038/agrieast.v15i1.98.
  • Sulyman, A. O.; Igunnu, A.; Malomo, S. O. Isolation, Purification and Characterization of Cellulase Produced by Aspergillus Niger Cultured on Arachis Hypogaea Shells. Heliyon. 2020, 6(12), e05668. DOI: 10.1016/j.heliyon.2020.e05668.
  • Bano, A.; Chen, X.; Prasongsuk, S.; Akbar, A.; Lotrakul, P.; Punnapayak, H.; Anwar, M.; Sajid, S.; Ali, I. Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus Flavus (TISTR 3637) and Its Prospects for Bioethanol Production. Appl. Biochem. Biotechnol. 2019, 189(4), 1327–1337. DOI: 10.1007/s12010-019-03086-y.
  • Swathy, R.; Rambabu, K.; Banat, F.; Ho, S. H.; Chu, D. T.; Show, P. L. Production and Optimization of High Grade Cellulase from Waste Date Seeds by Cellulomonas uda NCIM 2353 for Biohydrogen Production. Int. J. Hydrog. Energy. 2020, 45(42), 22260–22270. DOI: 10.1016/J.IJHYDENE.2019.06.171.
  • Jain, K. K.; Kumar, S.; Bhardwaj, K. N.; Kuhad, R. C. Functional Expression of a Thermostable Endoglucanase from Thermoascus Aurantiacus RCKK in Pichia Pastoris X-33 and Its Characterization. Mol. Biotechnol. 2018, 60(10), 736–748. DOI: 10.1007/s12033-018-0106-3.
  • Gaur, R.; Tiwari, S. Isolation, Production, Purification and Characterization of an Organic-Solvent-Thermostable Alkalophilic Cellulase from Bacillus vallismortis RG-07. BMC. BMC. Biotechnol. 2015, 15(1), 1–12. DOI: 10.1186/s12896-015-0129-9.
  • Zin, H. W.; Park, K. H.; Choi, T. J. Purification and Characterization of a Carboxymethyl Cellulase from Artemia Salina. Biochem. Biophys. Res. Commun. 2014, 443(1), 194–199. DOI: 10.1016/j.bbrc.2013.11.085.
  • Ma, L.; Yang, W.; Meng, F.; Ji, S.; Xin, H.; Cao, B. Characterization of an Acidic Cellulase Produced by Bacillus subtilis BY-4 Isolated from Gastrointestinal Tract of Tibetan Pig. J. Taiwan Inst. Chem. Eng. 2015, 56, 67–72. DOI: 10.1016/j.jtice.2015.04.025.
  • Silva, J. C. R.; Guimaraes, L. H. S.; Salgado, J. C. S.; Furriel, R. P. M.; Polizeli, M. L. T.; Rosa, J. C.; Jorge, J. A. Purification and biochemical characterization of glucose–cellobiose-tolerant cellulases from Scytalidium thermophilum. Folia. Microbiol. 2013, 58(6), 561–568. DOI: 10.1007/s12223-013-0245-7.
  • Chandra, M.; Kalra, A.; Sangwan, N. S.; Sangwan, R. S. Biochemical and proteomic characterization of a novel extracellular β-glucosidase from Trichoderma citrinoviride. Mol. Biotechnol. 2013, 53(3), 289–299. DOI: 10.1007/s12033-012-9526-7.
  • Chen, P.; Fu, X.; Ng, T. B.; Ye, X. Y. Expression of a Secretory β-Glucosidase from Trichoderma reesei in Pichia Pastoris and Its Characterization. Biotechnol. Lett. 2011, 33(12), 2475–2479. DOI: 10.1007/s10529-011-0724-3.
  • Arakawa, T.; Timasheff, S. N. Mechanism of Protein Salting in and Salting Out by Divalent Cation Salts: Balance Between Hydration and Salt Binding. Biochem. 1984, 23(25), 5912–5923. DOI: 10.1021/bi00320a004.
  • Coskun, O. Separation techniques: chromatography. North. Clin. Istanb. 2016, 3(2), 156–160. DOI: 10.14744/nci.2016.32757.
  • Novák, P.; Havlíček, V. Protein Extraction and Precipitation. In Proteomic. Profiling. And Analytical Chemistry. 2016, 51–62. DOI: 10.1021/bi00320a004.
  • Das, M.; Dasgupta, D. Pseudo-Affinity Column Chromatography Based Rapid Purification Procedure for T7 RNA Polymerase. Prep. Biochem. Biotechnol. 1998, 28(4), 339–348. DOI: 10.1080/10826069808010146.
  • Bollag, D. M. Gel-filtration chromotography. Peptide. Analysis. Protocols. 1994, 1–9. DOI: 10.1385/0-89603-274-4:1.
  • Zachariou, M.ed. Affinity Chromatography: Methods and Protocols(vol. 421); New York: Humana Press. 2008. DOI: 10.1007/978-1-59745-582-4
  • Mukherjee, S. Isolation and Purification of Industrial Enzymes: Advances in Enzyme Technology. In. Adv. Enzym. Technol. 2019, 41–70. DOI: 10.1016/B978-0-444-64114-4.00002-9.
  • Hage, D. S. C. In Principles and Applications of Clinical Mass Spectrometry. Elsevier. 2018, 1–32. DOI: 10.1016/B978-0-12-816063-3.00001-3.
  • An, T.; Dong, Z.; Lv, J.; Liu, Y.; Wang, M.; Wei, S.; Song, Y.; Zhang, Y.; Deng, S. Purification and Characterization of a Salt-Tolerant Cellulase from the Mangrove Oyster Crassostrea Rivularis. Acta Biochim. Biophys. Sin. 2015, 47(4), 299–305. DOI: 10.1093/abbs/gmv015.
  • Truelsen, T. A.; Wyndaele, R. Cellulase in tobacco callus: regulation and purification. J. Plant Physiol. 1991, 139(2), 129–134. DOI: 10.1016/S0176-1617(11)80596-1.
  • Bhati, N. S.; Sharma, A. K. Cost‐effective cellulase production, improvement strategies, and future challenges. J. Food Process. Eng. 2021, 44(2), 13623–13634. DOI: 10.1111/jfpe.13623.
  • Ferrarese, L.; Trainotti, L.; Moretto, P.; de Laureto, P. P.; Rascio, N.; Casadoro, G. Differential ethylene-inducible expression of cellulase in pepper plants. Plant Mol. Biol. 1995, 29(4), 735–747. DOI: 10.1007/BF00041164.
  • Walters, R. R. Affinity Chromatography. Anal. Chem. 1985, 57(11), 1099–1114A. DOI: 10.1021/ac00288a001.
  • Hagel, L. Gel-filtration chromatography. Curr. Protoc. Mol. Biol. 1998, 44(1), 10–199–210. DOI: 10.1002/0471142727.mb1009s44.
  • Irvine, G. B. Determination of Molecular Size by Size‐Exclusion Chromatography (Gel Filtration). Curr. Protoc. Cell. Biol. 2000, 6(1), 5–16. DOI: 10.1002/0471143030.cb0505s06.
  • Zhang, C.; Rodriguez, E.; Bi, C.; Zheng, X.; Suresh, D.; Suh, K.; Li, Z.; Elsebaei, F.; Hage, D. S. High Performance Affinity Chromatography and Related Separation Methods for the Analysis of Biological and Pharmaceutical Agents. Analyst. 2018, 143(2), 374–391. DOI: 10.1039/C7AN01469D.
  • Turkova, J. Affinity Chromatography. Elsevier. 1978.145–146. DOI: 10.1080/03602547808066060.
  • Poole, C. F.; Lenca, N. Gas Chromatography on Wall-Coated Open-Tubular Columns with Ionic Liquid Stationary Phases. J. Chromatogr. A. 2014, 29(1357), 87–109. DOI: 10.1016/j.chroma.2014.03.029.
  • Tswett, M. Physical Chemical Studies on Chlorophyll. Adsorptions. In A Source Book in Chemistry1900-1950, Leicester, H.M., ed.; Cambridge, MA and London, England: Harvard University Press, 2013; pp. 22–28.
  • Lindqvist, B.; Storgards, T. Molecular-Sieving Properties of Starch. Nature. 1955, 175(4455), 511–512. DOI: 10.1038/175511a0.
  • Lathe, G. H.; Ruthven, C. R. The Separation of Substances on the Basis of Their Molecular Weights, Using Columns of Starch and Water. Biochem. J. 1955, 60(4), 34–38. DOI: 10.1042/bj0600034.
  • Lathe, G. H.; Ruthven, C. R. J. The Separation of Substances and Estimation of Their Relative Molecular Sizes by the Use of Columns of Starch in Water. Biochem. J. 1956, 62(4), 665–674. DOI: 10.1042/bj0620665.
  • Paul-Dauphin, S.; Karaca, F.; Morgan, T. J.; Millan-Agorio, M.; Herod, A. A.; Kandiyoti, R. Probing Size Exclusion Mechanisms of Complex Hydrocarbon Mixtures: The Effect of Altering Eluent Compositions. Energy. Fuel. 2007, 21(6), 3484–3489. DOI: 10.1021/ef700410e.
  • Beldman, G. S.; Leeuwen, M. F.; Rombouts, F. M.; Voragen, F. G. The cellulase of Trichoderma viride: Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β‐glucosidases. Eur. J. Biochem. 1985, 146(2), 301–308. DOI: 10.1111/j.1432-1033.1985.tb08653.x.
  • Fukumori, F. K.; HorikoshiK, T. Purification and Properties of a Cellulase from Alkalophilic Bacillus sp. No. 1139. Microbiology. 1985, 131(12), 3339–3345. DOI: 10.1099/00221287-131-12-3339.
  • Spedding, F. H.; Fulmer, E. I.; Butler, T. A.; Gladrow, E. M.; Gobush, M.; Porter, P. E.; Powell, J. E.; Wright, J. M. The Separation of Rare Earths by Ion Exchange. 1 III. Pilot Plant Scale Separations. J. Am. Chem. Soc. 1947, 69(11), 2812–2818. DOI: 10.1021/ja01203a063.
  • Spedding, F. H.; Fulmer, E. I.; Ayers, B.; Butler, T. A.; Powell, J.; Tevebaugh, A. D.; Thompson, R. Improved Ion Exchange Method for Separating Rare Earths in Macro Quantities1. J. Am. Chem. Soc. 1948, 70(4), 1671–1672. DOI: 10.1021/ja01184a525.
  • Spedding, F. H.; Fulmer, E. I.; Powell, J. E.; Butler, T. A. The Separation of Rare Earths by Ion Exchange. V. Investigations with One-Tenth per Cent. Citric Acid-Ammonium Citrate Solutions1. J. Am. Chem. Soc. 1950, 72(6), 2354–2361. DOI: 10.1021/ja01162a004.
  • Vasti, J.; Milstein, C. The Disulfide Bridges of a Mouse Immunoglobulin G1 Protein. Biochem. J. 1972, 126(4), 837–850. DOI: 10.1042/bj1260837.
  • Rea, J. C.; Moreno, G. T.; Lou, Y.; Farnan, D. Validation of a pH Gradient-Based Ion-Exchange Chromatography Method for High-Resolution Monoclonal Antibody Charge Variant Separations. J. Pharm. Biomed. Anal. 2011, 54(2), 317–323. DOI: 10.1016/j.jpba.2010.08.030.
  • Cummins, P. M.; Rochfort, K. D.; O’ Connor, B. F. Ion-Exchange Chromatography: Basic Principles and Application. In Protein Chromatogr; Humana Press: New York, 2017; pp. 209–223. DOI: 10.1007/978-1-4939-6412-3_11.
  • Medve, J.; Lee, D.; Tjerneld, F. Ion-Exchange Chromatographic Purification and Quantitative Analysis of Trichoderma reesei Cellulases Cellobiohydrolase I, II and Endoglucanase II by Fast Protein Liquid Chromatography. J. Chromatogr. A. 1998, 808(1–2), 153–165. DOI: 10.1016/S0021-9673(98)00132-0.
  • Ejaz, U.; Moin, S. F.; Sohail, M.; Mersal, G. A.; Ibrahim, M. M.; El-Bahy, S. M. Characterization of a Novel End Product Tolerant and Thermostable Cellulase from Neobacillus Sedimentimangrovi UE25. Enzyme Microb. Technol. 2023, 162, 110133–. DOI: 10.1016/j.enzmictec.2022.110133.
  • Djelid, H.; Flahaut, S.; Vander Wauven, C.; Oudjama, Y.; Hiligsmann, S.; Cornu, B.; Cherfia, R.; Gares, M.; Kacem Chaouche, N. Production of a Halotolerant Endo-1, 4-β-Glucanase by a Newly Isolated Bacillus velezensis H1 on Olive Mill Wastes without Pretreatment: Purification and Characterization of the Enzyme. Arch. Microbiol. 2022, 204(11), 681–695. DOI: 10.1007/s00203-022-03300-2.
  • Murray, P.; Aro, N.; Collins, C.; Grassick, A.; Penttila, M.; Saloheimo, M.; Tuohy, M. Expression in Trichoderma reesei and Characterisation of a Thermostable Family 3 β-Glucosidase from the Moderately Thermophilic Fungus Talaromyces Emersonii. Protein Expr. Purif. 2004, 38(2), 248–257. DOI: 10.1016/j.pep.2004.08.006.
  • Sternberg, D.; Vuayakumar, P.; Reese, E. T. β-Glucosidase: Microbial Production and Effect on Enzymatic Hydrolysis of Cellulose. Can. J. Microbiol. 1977, 23(2), 139–147. DOI: 10.1139/m77-020.
  • Gemeiner, P.; M, P.; D, M.; V, Š. Cellulose as a (Bio) Affinity Carrier: Properties, Design and Applications. J. Chromatogr. B Biomed. Sci. Appl. 1998, 715(1), 245–271. DOI: 10.1016/S0378-4347(98)00047-4.
  • Kittler, S.; Besleaga, M.; Ebner, J.; Spadiut, O.; Protein, L. More Than Just an Affinity Ligand. Processes 2021 17, 9(5), 874–887. DOI: 10.3390/pr9050874.
  • Ettre, L. S. Nomenclature for Chromatography (IUPAC Recommendations 1993). Pure Appl. Chem. 1993, 65(4), 819–872. DOI: 10.1351/pac199365040819.
  • Fusco, F. A.; Fiorentino, G.; Pedone, E.; Contursi, P.; Bartolucci, S.; Limauro, D. Biochemical Characterization of a Novel Thermostable β-Glucosidase from Dictyoglomus turgidum. Int J. Biol. Macromol. 2018, 113, 783–791. DOI: 10.1016/j.ijbiomac.2018.03.018.
  • Fusco, F. A.; Ronca, R.; Fiorentino, G.; Pedone, E.; Contursi, P.; Bartolucci, S.; Limauro, D. Biochemical Characterization of a Thermostable Endomannanase/Endoglucanase from Dictyoglomus turgidum. Extremophiles. 2018, 22(1), 131–140. DOI: 10.1007/s00792-017-0983-6.
  • Liu, J.; Xia, W. Purification and Characterization of a Bifunctional Enzyme with Chitinase and Cellulase Activity from Commercial Cellulase. Biochem. Eng. J. 2006, 30(1), 82–87. DOI: 10.1016/j.bej.2006.02.005.
  • Tomaz, C. T.; Queiroz, J. A. Studies on the Chromatographic Fractionation of Trichoderma reesei Cellulases by Hydrophobic Interaction. J. Chromatogr. A. 1999, 865, 123–128. DOI: 10.1016/S0021-9673(99)00851-1.
  • Asha, B. M.; Sakthivel, N. Production, Purification and Characterization of a New Cellulase from Bacillus subtilis That Exhibit Halophilic, Alkalophilic and Solvent-Tolerant Properties. Ann. Microbial. 2014, 64(4), 1839–1848. DOI: 10.1007/s13213-014-0835-x.
  • Asha, M.; Revathi, M.; Yadav, A.; Sakthivel, N. Purification and Characterization of a Thermophilic Cellulase from a Novel Cellulolytic Strain, Paenibacillus Barcinonensis. J. Microbiol. Biotechnol. 2012, 22(11), 1501–1509. DOI: 10.4014/jmb.1202.02013.
  • Vesterberg, O. Isoelectric Focusing of Proteins. In Methods in Enzymology. Vol. 33) 22. Academic Press. 1971, pp. 389–412. DOI:10.1016/0076-6879(71)22035-8.
  • Han, J.; Fang, S.; He, X.; Wang, L.; Li, C.; Wu, J.; Cai, Y.; Wang, Y. Combination of Aqueous Two-Phase Flotation and Inverse Transition Cycling: Strategies for Separation and Purification of Recombinant β-Glucosidase from Cell Lysis Solution. Food. Chem. 2022, 373, 131543–131556. DOI: 10.1016/j.foodchem.2021.131543.
  • Mawadza, C.; Hatti-Kaul, R.; Zvauya, R.; Mattiasson, B. Purification and Characterization of Cellulases Produced by Two Bacillus Strains. J. Biotechnol. 2000, 83(3), 177–187. DOI: 10.1016/S0168-1656(00)00305-9.
  • Lew, F. T.; Lewis, L. N. Purification and Properties of Cellulase from Phaseolus Vulgaris. Phytochemistry. 1974, 13(8), 1359–1366. DOI: 10.1016/0031-9422(74)80292-X.
  • Berghem, L. E.; Pettersson, L. G. The Mechanism of Enzymatic Cellulose Degradation: Purification of a Cellulolytic Enzyme from Trichoderma viride Active on Highly Ordered Cellulose. Eur. J. Biochem. 1973, 37(1), 21–30. DOI: 10.1111/j.1432-1033.1973.tb02952.x.
  • Curioni, A.; Peruffo, A. D. B.; Nuti, M. P. Purification of Cellulases from Streptomyces Strain A20 by Electroendosmotic Preparative Electrophoresis. Electrophoresis. 1988, 9(7), 327–330. DOI: 10.1002/elps.1150090708.
  • Chen, J.; Balgley, B. M.; DL, D.; Lee, C. S. Capillary Isoelectric Focusing-Based Multidimensional Concentration/Separation Platform for Proteome Analysis. Anal. Chem. 2003 1, 75(13), 3145–3152. DOI: 10.1021/ac034014.
  • DiCosimo, R.; McAuliffe, J.; Poulose, A. J.; Bohlmann, G. Industrial Use of Immobilized Enzymes. Chem. Soc. Rev. 2013, 42(15), 6437–6474. DOI: 10.1039/C3CS35506C.
  • Evangelista, R. L.; Kusnadi, A. R.; Howard, J. A.; Nikolov, Z. L. Process and Economic Evaluation of the Extraction and Purification of Recombinant β‐Glucuronidase from Transgenic Corn. Biotechnol. Prog. 1998, 14(4), 607–614. DOI: 10.1021/bp980047c.
  • Guiochon, G. Preparative liquid chromatography. J. Chromatogr. A. 2002, 965(1–2), 129–161. DOI: 10.1016/S0021-9673(01)01471-6.
  • Khadka, S.; Khadka, D.; Poudel, R. C.; Bhandari, M.; Baidya, P.; Sijapati, J.; Maharjan, J. Production Optimization and Biochemical Characterization of Cellulase from Geobacillus sp. KP43 Isolated from Hot Spring Water of Nepal. Biomed Res. Int. 2022 112, 20221–12. DOI: 10.1155/2022/6840409.
  • Tanaka, D.; Ohnishi, K. I.; Watanabe, S.; Suzuki, S. Isolation of Cellulase-Producing Microbulbifer sp. from Marine Teleost Blackfish (Girella melanichthys) Intestine and the Enzyme Characterization. J. Gen. Appl. Microbiol. 2021, 67(2), 47–53. DOI: 10.2323/jgam.2020.05.001.
  • Zhao, X.; Liu, L.; Deng, Z.; Liu, S.; Yun, J.; Xiao, X.; Li, H. Screening, Cloning, Enzymatic Properties of a Novel Thermostable Cellulase Enzyme, and Its Potential Application on Water Hyacinth Utilization. Int. Microbiol. 2021, 24, 337–349. DOI: 10.1007/s10123-021-00170-4.
  • Çamurlu, D.; Onal, S. Encapsulation and Characterization of Cellulase Purified with Three-Phase Partitioning Technique. Biocatal. Biotransformation. 2021, 39(4), 292–301. DOI: 10.1080/10242422.2021.1883005.
  • Shanmugarajah, M.; Kapilan, R. Purification and characterization of cellulase from Aspergillus unguis isolated from decaying coconut wood. AGRIEAST: J. Agricultural Sciences. 2021, 15(1), 14–27. DOI: 10.4038/agrieast.v15i1.98.
  • Nishida, Y.; Suzuki, K. I.; Kumagai, Y.; Tanaka, H.; Inoue, A.; Ojima, T. Isolation and Primary Structure of a Cellulase from the Japanese Sea Urchin Strongylocentrotus Nudus. Biochimie. 2007, 89(8), 1002–1011. DOI: 10.1016/j.biochi.2007.03.015.
  • Tsuji, A.; Sato, S.; Kondo, A.; Tominaga, K.; Yuasa, K. Purification and Characterization of Cellulase from North Pacific Krill (Euphausia pacifica). Analysis of Cleavage Specificity of the Enzyme. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2012, 163(3–4), 324–333. DOI: 10.1016/j.cbpb.2012.08.005.
  • Suzuki, K. I.; Ojima, T.; Nishita, K. Purification and cDNA Cloning of a Cellulase from Abalone Haliotis Discus Hannai. Eur. J. Biochem. 2003, 270(4), 771–778. DOI: 10.1046/j.1432-1033.2003.03443.x.
  • Nakamura, S.; Hayashi, T. Purification and Properties of an Extracellular Endo-1, 4-rβ-Glucanase from Suspension-Cultured Poplar Cells. Plant. Cell. Physiol. 1993, 34(7), 1009–1013. DOI: 10.1093/oxfordjournals.pcp.a078513.
  • Byrne, H.; Christou, N. V.; Verma, D. P.; Maclachlan, G. A. Purification and Characterization of Two Cellulases from Auxin-Treated Pea Epicotyls. J. Biol. Chem. 1975, 250(3), 1012–1018. DOI: 10.1016/S0021-9258(19)41885-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.