302
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in Carbon Control Technologies for Flue Gas Cleaning

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Received 18 May 2021, Accepted 28 Feb 2024, Published online: 15 Mar 2024

References

  • Gislason, S. R.; Oelkers, E. H., Carbon Storage in Basalt, Science 344 (2014) 373–374. 10.1126/science.1250828. 6182
  • The National Aeronautics and Space Administration (NASA), Carbon Dioxide, (2021). https://climate.nasa.gov/vital-signs/carbon-dioxide/ (accessed Dec 6, 2021).
  • International Energy Agency (IEA). Global Energy-Related CO2 Emissions by Sector, (2021). https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector (accessed Dec 11, 2021).
  • U. Energy Information and Administration, CO2 concentration on various fuels, (2019). https://www.eia.gov/coal/production/quarterly/co2_article/co2.html (accessed Oct 15, 2019).
  • Bahman, N.; Al-Khalifa, M.; Al Baharna, S.; Abdulmohsen, Z.; Khan, E., Review of carbon capture and storage technologies in selected industries: potentials and challenges, Rev. Environ. Sci. Biotechnol. 22 (2023) 451–470. 10.1007/s11157-023-09649-0. 2
  • Algayyim, S. J. M.; Saleh, K.; Wandel, A. P.; Fattah, I. M. R.; Yusaf, T.; Alrazen, H. A., Influence of Natural Gas and Hydrogen Properties on Internal Combustion Engine Performance, Combustion, and Emissions: A Review, Fuel 362 (2024) 130844. 10.1016/j.fuel.2023.130844.
  • Rajabloo, T.; Valee, J.; Marenne, Y.; Coppens, L.; De Ceuninck, W. Carbon capture and utilization for industrial applications. Energy Rep. 2023, 9, 111–116. DOI: 10.1016/j.egyr.2022.12.009.
  • Rezaei, S.; Liu, A.; Hovington, P. Emerging technologies in post-combustion carbon dioxide capture & removal. Catalysis Today. 2023, 423, 114286. DOI: 10.1016/j.cattod.2023.114286.
  • Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A. H.; Olabi, A. G. Outlook of Carbon Capture Technology and Challenges. Sci. Total Environ. 2019, 657, 56–72. DOI: 10.1016/j.scitotenv.2018.11.424.
  • Mukherjee, A.; Okolie, J. A.; Abdelrasoul, A.; Niu, C.; Dalai, A. K. Review of post-combustion carbon dioxide capture technologies using activated carbon. J Environ Sci. 2019, 83, 46–63. DOI: 10.1016/j.jes.2019.03.014.
  • Yurata, T.; Lei, H.; Tang, L.; Lu, M.; Patel, J.; Lim, S.; Piumsomboon, P.; Chalermsinsuwan, B.; Li, C., Feasibility and Sustainability Analyses of Carbon Dioxide – Hydrogen Separation via de-Sublimation Process in Comparison with Other Processes, Int. J. Hydrogen. Energy. 44 (2019) 23120–23134. 10.1016/j.ijhydene.2019.07.032. 41
  • Han, S.-J.; Wee, J.-H., Carbon Dioxide Fixation by Combined Method of Physical Absorption and Carbonation in NaOH-Dissolved Methanol, Energy. Fuels 31 (2017) 1747–1755. 10.1021/acs.energyfuels.6b02709. 2
  • Xu, Y.; Goh, K.; Wang, R.; Bae, T.-H. A Review on Polymer-Based Membranes for Gas-Liquid Membrane Contacting Processes: Current Challenges and Future Direction. Sep. Purif. Technol. 2019, 229, 115791. DOI: 10.1016/j.seppur.2019.115791.
  • Liu, F.; Fang, M.; Yi, N.; Wang, T., Research on Alkanolamine-Based Physical–Chemical Solutions as Biphasic Solvents for CO2 Capture, Energy. Fuels 33 (2019) 11389–11398. 10.1021/acs.energyfuels.9b02392. 11
  • Heldebrant, D. J.; Koech, P. K.; Glezakou, V.-A.; Rousseau, R.; Malhotra, D.; Cantu, D. C., Water-Lean Solvents for Post-Combustion CO2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook, Chem. Rev. 117 (2017) 9594–9624. 10.1021/acs.chemrev.6b00768. 14
  • Sreenivasulu, B.; Gayatri, D. V.; Sreedhar, I.; Raghavan, K. V. A Journey into the Process and Engineering Aspects of Carbon Capture Technologies. Renewable Sustainable Energy Rev. 2015, 41, 1324–1350. DOI: 10.1016/j.rser.2014.09.029.
  • Brea, U.; Gómez-Díaz, D.; Navaza, J. M.; Rumbo, A. Carbon Dioxide Chemical Absorption in Non-Aqueous Solvents by the Presence of Water. J. Taiwan Inst. Chem. Eng. 2019, 102, 250–258. DOI: 10.1016/j.jtice.2019.06.009.
  • de Meyer, F.; Jouenne, S. Industrial Carbon Capture by Absorption: Recent Advances and Path Forward. Curr. Opin. Chem. Eng. 2022, 38, 100868. DOI: 10.1016/j.coche.2022.100868.
  • Kiani, A.; Jiang, K.; Feron, P., Techno-Economic Assessment for CO2 Capture from Air Using a Conventional Liquid-Based Absorption Process, Front. Energy Res. 8 (2020). 10.3389/fenrg.2020.00092.
  • Kiani, A.; Jiang, K.; Feron, P., Techno-Economic Assessment for CO2 Capture From Air Using a Conventional Liquid-Based Absorption Process, Front. Energy Res. 8 (2020) 1–13. 10.3389/fenrg.2020.00092.
  • Global CCS Institute, CO2 Capture Technologies – Post Combustion Capture (PCC), 2012.
  • Stéphenne, K. Start-Up of World’s First Commercial Post-Combustion Coal Fired CCS Project: Contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia. 2014, 63, 6106–6110. DOI: 10.1016/j.egypro.2014.11.642.
  • Fujiwara, K., Petra Nova Carbon Capture, Utilization, and Storage Project: capturing CO 2 from the flue gas stream of a coal-fired power plant and increasing oil production from a legacy oil field., J. Japn. Assoc. Petrol Technol 84 (2019). 2 114–122 10.3720/japt.84.114
  • Kennedy, G.; Parish, W. A. Post-Combustion CO2 Capture and Sequestration Demonstration Project, Pittsburgh, PA, and Morgantown, WV (United States), 2020. 10.2172/1608572.
  • Zanco, S. E.; Pérez-Calvo, J.-F.; Gasós, A.; Cordiano, B.; Becattini, V.; Mazzotti, M., Postcombustion CO2 Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane, ACS Eng. Au 1 (2021) 50–72. 10.1021/acsengineeringau.1c00002. 1
  • El Hadri, N.; Quang, D. V.; Goetheer, E. L. V.; Abu Zahra, M. R. M., Aqueous amine solution characterization for post-combustion CO2 capture process, Appl. Energy 185 (2017) 1433–1449. 10.1016/j.apenergy.2016.03.043.
  • Vega, F.; Cano, M.; Camino, S.; Fernández, L. M. G.; Portillo, E.; Navarrete, B. Solvents for Carbon Dioxide Capture. In Carbon Dioxide Chemistry, Capture and Oil Recovery; InTech, 2018. DOI: 10.5772/intechopen.71443.
  • Navaza, J. M.; Gómez-Díaz, D.; La Rubia, M. D., Removal Process of CO2 Using MDEA Aqueous Solutions in a Bubble Column Reactor, Chem. Eng. J. 146 (2009) 184–188. 10.1016/j.cej.2008.04.040. 2
  • Li, J.; Lin, X.; Ning, P.-G.; Cao, H.-B.; Zhang, Y. Measurement and Modelling of the Solubility of Carbon Dioxide in Aqueous 1,8-P-Menthane-Diamine Solution. J. Chem. Thermodyn. 2014, 71, 64–70. DOI: 10.1016/j.jct.2013.11.018.
  • Russo, M. E.; Olivieri, G.; Marzocchella, A.; Salatino, P.; Caramuscio, P.; Cavaleiro, C., Post-Combustion Carbon Capture Mediated by Carbonic Anhydrase, Sep. Purif. Technol. 107 (2013) 331–339. 10.1016/j.seppur.2012.06.022.
  • Isa, F.; Zabiri, H.; Ng, N. K. S.; Shariff, A. M., CO2 Removal via Promoted Potassium Carbonate: A Review on Modeling and Simulation Techniques, Int. J. Greenhouse Gas Con. 76 (2018) 236–265. 10.1016/j.ijggc.2018.07.004.
  • Cullinane, J. T.; Rochelle, G. T., Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine, Chem. Eng. Sci. 59 (2004) 3619–3630. 10.1016/j.ces.2004.03.029.
  • Kemper, J.; Ewert, G.; Grünewald, M. Absorption and Regeneration Performance of Novel Reactive Amine Solvents for Post-Combustion CO2 Capture. Energy Procedia. 2011, 4, 232–239. DOI: 10.1016/j.egypro.2011.01.046.
  • Brúder, P.; Lauritsen, K. G.; Mejdell, T.; Svendsen, H. F. CO2 Capture into Aqueous Solutions of 3-Methylaminopropylamine Activated Dimethyl-Monoethanolamine. Chem. Eng. Sci. 2012, 75, 28–37. DOI: 10.1016/j.ces.2012.03.005.
  • Garg, S.; Shariff, A. M.; Shaikh, M. S.; Lal, B.; Suleman, H.; Faiqa, N. Experimental Data, Thermodynamic and Neural Network Modeling of CO2 Solubility in Aqueous Sodium Salt of L -Phenylalanine. J. CO2 Util. 2017, 19, 146–156. DOI: 10.1016/j.jcou.2017.03.011.
  • Garg, S.; Shariff, A. M.; Shaikh, M. S.; Lal, B.; Aftab, A.; Faiqa, N. VLE of CO2 in Aqueous Potassium Salt of L-Phenylalanine: Experimental Data and Modeling Using Modified Kent-Eisenberg Model. J. Nat. Gas. Sci. Eng. 2016, 34, 864–872. DOI: 10.1016/j.jngse.2016.07.047.
  • Aftab, A.; Shariff, A. M.; Garg, S.; Lal, B.; Shaikh, M. S.; Faiqa, N., Solubility of CO2 in Aqueous Sodium β-Alaninate: Experimental Study and Modeling Using Kent Eisenberg Model, Chem. Eng. Res. Des. 131 (2018) 385–392. 10.1016/j.cherd.2017.10.023.
  • Shariff, A. M.; Shaikh, M. S.; Bustam, M. A.; Garg, S.; Faiqa, N.; Aftab, A. High-Pressure Solubility of Carbon Dioxide in Aqueous Sodium L- Prolinate Solution. Procedia Eng. 2016, 148, 580–587. DOI: 10.1016/j.proeng.2016.06.516.
  • Kang, D.; Park, S.; Jo, H.; Min, J.; Park, J., Solubility of CO 2 in Amino-Acid-Based Solutions of (Potassium Sarcosinate), (Potassium Alaninate + Piperazine), and (Potassium Serinate + Piperazine)), J. Chem. Eng, Data. 58 (2013) 1787–1791. 10.1021/je4001813. 6
  • Yan, X.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic Liquids Combined with Membrane Separation Processes: A Review. Sep. Purif. Technol. 2019, 222, 230–253. DOI: 10.1016/j.seppur.2019.03.103.
  • Zunita, M.; Hastuti, R.; Alamsyah, A.; Khoiruddin, K.; Wenten, I. G. Ionic Liquid Membrane for Carbon Capture and Separation. Sep. Purif. Rev. 2022, 51, 261–280. DOI: 10.1080/15422119.2021.1920428.
  • Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S., Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process, Chem. Rev. 117 (2017) 9625–9673. 10.1021/acs.chemrev.7b00072. 14
  • Hayes, R.; Warr, G. G.; Atkin, R., Structure and Nanostructure in Ionic Liquids, Chem. Rev. 115 (2015) 6357–6426. 10.1021/cr500411q. 13
  • Pan, M.; Wang, C. Ionic Liquids for Chemisorption of CO2. In Materials for Carbon Capture; Wiley: 2020; pp. 297–315. DOI:10.1002/9781119091219.ch11
  • Tamura, T.; Yoshida, K.; Hachida, T.; Tsuchiya, M.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Dokko, K.; Watanabe, M., Physicochemical Properties of Glyme–Li Salt Complexes As a New Family of Room-Temperature Ionic Liquids, Chem. Lett. 39 (2010) 753–755. 10.1246/cl.2010.753. 7
  • Tamura, K.; Miyaguchi, S.; Sakaue, K.; Nishihata, Y.; Mizuki, J., Direct Observation of Au(111) Electrode Surface Structure in Bis(trifluoromethylsulfonyl)amide-Based Ionic Liquids Using Surface X-Ray Scattering, Electrochem. Commun. 13 (2011) 411–413. 10.1016/j.elecom.2011.02.006.
  • Tamura, K.; Nakamura, N.; Ohno, H., Cytochrome C Dissolved in 1–Allyl–3–Methylimidazolium Chloride Type Ionic Liquid Undergoes a Quasi–Reversible Redox Reaction Up to 140°c, Biotechnol. Bioeng. 109 (2012) 729–735. 10.1002/bit.24357.
  • Si, D.; Chen, K.; Yao, J.; Li, H., Structures and Electronic Properties of Lithium Chelate-Based Ionic Liquids, J. Phys. Chem B. 120 (2016) 3904–3913. 10.1021/acs.jpcb.6b00731. 16
  • Li, X.; Hou, M.; Zhang, Z.; Han, B.; Yang, G.; Wang, X.; Zou, L., Absorption of CO2 by Ionic Liquid/Polyethylene Glycol Mixture and the Thermodynamic Parameters, Green Chem. 10 (2008) 879. 10.1039/b801948g. 8
  • Rawate, H. D.; Vaidya, P. D., CO 2 Absorption Kinetics and Equilibrium Solubility Measurements in Potassium Salts of Renewable Amino Acids from Plant- and Animal-Protein, Can. J. Chem. Eng. (2023). 10.1002/cjce.25083. 102 2 899–910
  • Garg, S.; Shariff, A. M.; Shaikh, M. S.; Lal, B.; Aftab, A.; Faiqa, N. Selected Physical Properties of Aqueous Potassium Salt of L-Phenylalanine As a Solvent for CO2 Capture. Chem. Eng. Res. Des. 2016, 113, 169–181. DOI: 10.1016/j.cherd.2016.07.015.
  • Hong, S.; Sim, G.; Moon, S.; Park, Y., Low-Temperature Regeneration of Amines Integrated with Production of Structure-Controlled Calcium Carbonates for Combined CO2 Capture and Utilization, Energy. Fuels 34 (2020) 3532–3539. 10.1021/acs.energyfuels.9b04339. 3
  • Wang, X.; Song, C. Carbon Capture from Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020, 8. DOI: 10.3389/fenrg.2020.560849.
  • Zeng, H.; Qu, X.; Xu, D.; Luo, Y. Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Front. Chem. 2022, 10. DOI: 10.3389/fchem.2022.939701.
  • Raganati, F.; Miccio, F.; Ammendola, P., Adsorption of Carbon Dioxide for Post-Combustion Capture: A Review, Energy Fuels 35 (2021) 12845–12868. 10.1021/acs.energyfuels.1c01618. 16
  • Allangawi, A.; Alzaimoor, E. F. H.; Shanaah, H. H.; Mohammed, H. A.; Saqer, H.; El-Fattah, A. A.; Kamel, A. H., Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes, C (Basel) 9 (2023) 17. 10.3390/c9010017. C 1
  • Buckingham, J.; Reina, T. R.; Duyar, M. S., Recent advances in carbon dioxide capture for process intensification 2 (2022) 100031. 10.1016/j.ccst.2022.100031. Carbon Capture Sci. Technol.
  • Meng, Y.; Jiang, J.; Gao, Y.; Yan, F.; Liu, N.; Aihemaiti, A. Comprehensive Study of CO2 Capture Performance Under a Wide Temperature Range Using Polyethyleneimine-Modified Adsorbents. J. CO2 Util. 2018, 27, 89–98. DOI: 10.1016/j.jcou.2018.07.007.
  • Singh, N.; Farina, I.; Petrillo, A.; Colangelo, F.; De Felice, F., Carbon Capture, Sequestration, and Usage for Clean and Green Environment: Challenges and Opportunities, Int. J. Sustain. Eng. 16 (2023) 248–268. 10.1080/19397038.2023.2256379. 1
  • Office of Fossil Energy and Carbon Management, Funding Opportunity Announcement 2515, Carbon Capture R&D for Natural Gas and Industrial Point Sources, and Front-End Engineering Design Studies for Carbon Capture Systems at Industrial Facilities and Natural Gas Plants, (2021). https://www.energy.gov/fecm/articles/funding-opportunity-announcement-2515-carbon-capture-rd-natural-gas-and-industrial (accessed Aug 21, 2023).
  • Boer, D. G.; Langerak, J.; Pescarmona, P. P., Zeolites As Selective Adsorbents for CO2 Separation, ACS Appl. Energy Mater. 6 (2023) 2634–2656. 10.1021/acsaem.2c03605. 5
  • Kondratyuk, E. V.; Maltseva, S. M.; Stroganov, D. A.; Ryabkova, E. A.; Trubina, I. S., The Use of Natural Zeolites as Stationary Filters for Disinfection and Purification of Indoor Air, Sib. J. Life Sci. Agric 14 (2022) 172–191. 10.12731/2658-6649-2022-14-3-172-191. 3
  • Liu, S.; Chen, Y.; Yue, B.; Wang, C.; Qin, B.; Chai, Y.; Wu, G.; Li, J.; Han, X.; da–Silva, I., et al., Regulating Extra–Framework Cations in Faujasite Zeolites for Capture of Trace Carbon Dioxide, Chem. Eur. J. 28 (2022). 10.1002/chem.202201659. 50
  • Mambetova, М. М.; Yergaziyeva, G. Y.; Zhoketayeva, А. B., Physicochemical Characteristics and Carbon Dioxide Sorption Properties of Natural Zeolites, Горение и Плазмохимия 21 (2023) 81–87. 10.18321/cpc21(2)81-87. 2
  • Chatterjee, S.; Jeevanandham, S.; Mukherjee, M.; Vo, D.-V. N.; Mishra, V., Significance of re-engineered zeolites in climate mitigation – A review for carbon capture and separation, J. Environ. Chem. Eng 9 (2021) 105957. 10.1016/j.jece.2021.105957. 5
  • Gonzalez-Olmos, R.; Gutierrez-Ortega, A.; Sempere, J.; Nomen, R. Zeolite versus carbon adsorbents in carbon capture: A comparison from an operational and life cycle perspective. J. CO2 Util. 2022, 55, 101791. DOI: 10.1016/j.jcou.2021.101791.
  • Makertihartha, I. G. B. N.; Kencana, K. S.; Dwiputra, T. R.; Khoiruddin, K.; Lugito, G.; Mukti, R. R.; Wenten, I. G., SAPO-34 zeotype membrane for gas sweetening, Rev. Chem. Eng. 38 (2022) 431–450. 10.1515/revce-2019-0086. 4
  • Aghel, B.; Behaein, S.; Alobaid, F. CO2 Capture from Biogas by Biomass-Based Adsorbents: A Review. Fuel. 2022, 328, 125276. DOI: 10.1016/j.fuel.2022.125276.
  • Gunawardene, O. H. P.; Gunathilake, C. A.; Vikrant, K.; Amaraweera, S. M., Carbon Dioxide Capture Through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review, Atmos 13 (2022) 397. 10.3390/atmos13030397. 3
  • Ahmed, R.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Ali, M. U. Recent Advances in Carbon-Based Renewable Adsorbent for Selective Carbon Dioxide Capture and Separation–A Review. J. Clean. Prod. 2020, 242, 118409. DOI: 10.1016/j.jclepro.2019.118409.
  • Gopalan, J.; Buthiyappan, A.; Abdul Raman, A. A., Insight into Metal-Impregnated Biomass Based Activated Carbon for Enhanced Carbon Dioxide Adsorption: A Review, J. Ind. Eng. Chem. 113 (2022) 72–95. 10.1016/j.jiec.2022.06.026.
  • Zhang, S.; Zheng, M.; Tang, Y.; Zang, R.; Zhang, X.; Huang, X.; Chen, Y.; Yamauchi, Y.; Kaskel, S.; Pang, H., Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture, Adv. Funct. Mater. 32 (2022). 10.1002/adfm.202204714. 40
  • Mohd Azmi, N. Z.; Buthiyappan, A.; Abdul Raman, A. A.; Abdul Patah, M. F.; Sufian, S., Recent advances in biomass based activated carbon for carbon dioxide capture – A review, J. Ind. Eng. Chem. 116 (2022) 1–20. 10.1016/j.jiec.2022.08.021.
  • Samaddoost, L.; Soltani, M.; Fatehifar, E.; Asl, E. A., Design of Amine-Functionalized Resin via a Facial Method with Efficient CO2 Capture from Air, Process Saf. Environ. Prot. 171 (2023) 18–27. 10.1016/j.psep.2023.01.008.
  • Fan, Y.; Jia, X., Progress in Amine-Functionalized Silica for CO2 Capture: Important Roles of Support and Amine Structure, Energy. Fuels 36 (2022) 1252–1270. 10.1021/acs.energyfuels.1c03788. 3
  • Ajumobi, O.; Wang, B.; Farinmade, A.; He, J.; Valla, J. A.; John, V. T., Design of Nanostraws in Amine-Functionalized MCM-41 for Improved Adsorption Capacity in Carbon Capture, Energy Fuels 37 (2023) 12079–12088. 10.1021/acs.energyfuels.3c01318. 16
  • Wang, Y.; Jin, H.; Ma, Q.; Mo, K.; Mao, H.; Feldhoff, A.; Cao, X.; Li, Y.; Pan, F.; Jiang, Z., A MOF Glass Membrane for Gas Separation, Angew. Chem. Int. Ed. 59 (2020) 4365–4369. 10.1002/anie.201915807.
  • Prasetya, N.; Himma, N. F.; Sutrisna, P. D.; Wenten, I. G.; Ladewig, B. P., A Review on Emerging Organic-Containing Microporous Material Membranes for Carbon Capture and Separation, Chem. Eng. J. 391 (2020) 123575. 10.1016/j.cej.2019.123575.
  • Lyu, H.; Li, H.; Hanikel, N.; Wang, K.; Yaghi, O. M., Covalent Organic Frameworks for Carbon Dioxide Capture from Air, J. Am. Chem. Soc 144(28) (2022) 12989–12995. 10.1021/jacs.2c05382.
  • Usman, M.; Iqbal, N.; Noor, T.; Zaman, N.; Asghar, A.; Abdelnaby, M. M.; Galadima, A.; Helal, A., Advanced Strategies in Metal-Organic Frameworks for CO2 Capture and Separation, Chem. Rec. 22 (2022). 10.1002/tcr.202100230. 7
  • Li, L.; Jung, H. S.; Lee, J. W.; Kang, Y. T. Review on Applications of Metal–Organic Frameworks for CO2 Capture and the Performance Enhancement Mechanisms. Renewable Sustainable Energy Rev. 2022, 162, 112441. DOI: 10.1016/j.rser.2022.112441.
  • Zhuang, W.; Yuan, D.; Liu, D.; Zhong, C.; Li, J. R.; Zhou, H.-C., Robust Metal–Organic Framework with an Octatopic Ligand for Gas Adsorption and Separation: Combined Characterization by Experiments and Molecular Simulation, Chem. Mater 24 (2012) 18–25. 10.1021/cm2008889. 1
  • Luo, J.-P.; Zhang, J.; Yin, N.; Wang, T.-P.; Tan, Z.-C.; Han, W.; Shi, Q. An Experimental Strategy for Evaluating the Energy Performance of Metal–Organic Framework-Based Carbon Dioxide Adsorbents. Chem. Eng. J. 2022, 442, 136210. DOI: 10.1016/j.cej.2022.136210.
  • Siagian, U. W. R.; Raksajati, A.; Himma, N. F.; Khoiruddin, K.; Wenten, I. G., Membrane-Based Carbon Capture Technologies: Membrane Gas Separation Vs. Membrane Contactor, J. Nat. Gas. Sci. Eng. 67 (2019) 172–195. 10.1016/j.jngse.2019.04.008.
  • Sun, J.; Yi, Z.; Zhao, X.; Zhou, Y.; Gao, C., CO2 Separation Membranes with High Permeability and CO2/N2 Selectivity Prepared by Electrostatic Self-Assembly of Polyethylenimine on Reverse Osmosis Membranes, R.S.C. Adv 7 (2017) 14678–14687. 10.1039/C7RA00094D. 24
  • Janakiram, S.; Ahmadi, M.; Dai, Z.; Ansaloni, L.; Deng, L., Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review, Membranes 8 (2018) 24. 10.3390/membranes8020024. 2
  • Khoiruddin, K.; Kadja, G. T. M.; Wenten, I. G. Sustainable Membranes with FNMs for Energy Generation and Fuel Cells. In Membranes with Functionalized Nanomaterials; Elsevier: 2022; pp. 245–274. DOI:10.1016/B978-0-323-85946-2.00010-2
  • Wenten, I. G.; Khoiruddin, K.; Kadja, G. T. M.; Mukti, R. R.; Sutrisna, P. D. Modified Zeolite-Based Polymer Nanocomposite Membranes for Pervaporation. In Polymer Nanocomposite Membranes for Pervaporation; Elsevier: 2020; pp. 263–300. DOI:10.1016/B978-0-12-816785-4.00011-2
  • Robeson, L. M., The Upper Bound Revisited, J. Memb. Sci. 320 (2008) 390–400. 10.1016/j.memsci.2008.04.030.
  • Wang, S.; Li, X.; Wu, H.; Tian, Z.; Xin, Q.; He, G.; Peng, D.; Chen, S.; Yin, Y.; Jiang, Z., et al., Advances in High Permeability Polymer-Based Membrane Materials for CO 2 Separations, Energy Environ. Sci. 9 (2016) 1863–1890. 10.1039/C6EE00811A. 6
  • Liu, J.; Hou, X.; Park, H. B.; Lin, H., High-Performance Polymers for Membrane CO 2 /N 2 Separation – Chem. A Eur J 22 (2016) 15980–15990. 10.1002/chem.201603002. 45
  • Hossain, I.; Al Munsur, A.; Kim, T.-H. A Facile Synthesis of (PIM-Polyimide)-(6FDA-Durene-Polyimide) Copolymer As Novel Polymer Membranes for CO2 Separation, Membranes (Basel. 2019, 9(9), 113. DOI: 10.3390/membranes9090113.
  • Rafiq, S.; Deng, L.; Hägg, M., Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO 2 Capture – a Review – Chem. Bio. Eng. Rev 3 (2016) 68–85. 10.1002/cben.201500013. 2
  • Tzialla, O.; Veziri, C.; Papatryfon, X.; Beltsios, K. G.; Labropoulos, A.; Iliev, B.; Adamova, G.; Schubert, T. J. S.; Kroon, M. C.; Francisco, M., et al., Zeolite Imidazolate Framework–Ionic Liquid Hybrid Membranes for Highly Selective CO2 Separation, J. Phys. Chem. C 117 (2013) 18434–18440. 10.1021/jp4051287. 36
  • Zhai, H. Advanced Membranes and Learning Scale Required for Cost-Effective Post-Combustion Carbon Capture. IScience. 2019, 13, 440–451. DOI: 10.1016/j.isci.2019.03.006.
  • Dai, Z.; Aboukeila, H.; Ansaloni, L.; Deng, J.; Giacinti Baschetti, M.; Deng, L. Nafion/PEG Hybrid Membrane for CO2 Separation: Effect of PEG on Membrane Micro-Structure and Performance. Sep. Purif. Technol. 2019, 214, 67–77. DOI: 10.1016/j.seppur.2018.03.062.
  • Bernardo, G.; Araújo, T.; da Silva Lopes, T.; Sousa, J.; Mendes, A., Recent advances in membrane technologies for hydrogen purification, Int. J. Hydrogen. Energy. 45 (2020) 7313–7338. 10.1016/j.ijhydene.2019.06.162. 12
  • Chabanon, E.; Roizard, D.; Favre, E. Modeling strategies of membrane contactors for post-combustion carbon capture: A critical comparative study. Chem. Eng. Sci. 2013, 87, 393–407. DOI: 10.1016/j.ces.2012.09.011.
  • Krishna, R., Describing the Diffusion of Guest Molecules Inside Porous Structures, J. Phys. Chem. C 113(46) (2009) 19756–19781. 10.1021/jp906879d.
  • Paul, S.; Ghoshal, A. K.; Mandal, B., Theoretical Studies on Separation of CO2 by Single and Blended Aqueous Alkanolamine Solvents in Flat Sheet Membrane Contactor (FSMC)), Chem. Eng. J. 144 (2008) 352–360. 10.1016/j.cej.2008.01.036. 3
  • Liang, C. Z.; Liu, J. T.; Lai, J.-Y.; Chung, T.-S. High-Performance Multiple-Layer PIM Composite Hollow Fiber Membranes for Gas Separation. J. Memb. Sci. 2018, 563, 93–106. DOI: 10.1016/j.memsci.2018.05.045.
  • Rahmah, W.; Kadja, G. T. M.; Mahyuddin, M. H.; Saputro, A. G.; Dipojono, H. K.; Wenten, I. G., Small-pore zeolite and zeotype membranes for CO2 capture and sequestration – A review, J. Environ. Chem. Eng 10 (2022) 108707. 10.1016/j.jece.2022.108707.
  • Wenten, I. G.; Khoiruddin, K.; Mukti, R. R.; Rahmah, W.; Wang, Z.; Kawi, S., Zeolite Membrane Reactors: From Preparation to Application in Heterogeneous Catalytic Reactions, Reaction Chem. Eng. 6 (2021) 401–417. 10.1039/D0RE00388C. 3
  • Makertihartha, I. G. B. N.; Kencana, K. S.; Dwiputra, T. R.; Khoiruddin, K.; Mukti, R. R.; Wenten, I. G. Silica Supported SAPO-34 Membranes for CO2/N2 Separation. Microporous Mesoporous Mater. 2020, 298, 110068. DOI: 10.1016/j.micromeso.2020.110068.
  • Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G., Post Combustion CO2 Capture Using Zeolite Membrane, 2017 p. 020074. 10.1063/1.4979941.
  • Kang, Z.; Peng, Y.; Hu, Z.; Qian, Y.; Chi, C.; Yeo, L. Y.; Tee, L.; Zhao, D., Mixed Matrix Membranes Composed of Two-Dimensional Metal–Organic Framework Nanosheets for Pre-Combustion CO 2 Capture: A Relationship Study of Filler Morphology versus Membrane Performance, J. Mater. Chem. A 3 (2015) 20801–20810. 10.1039/C5TA03739E. 41
  • Lin, Y.-F.; Wang, W.-W.; Chang, C.-Y., Environmentally Sustainable, Fluorine-Free and Waterproof Breathable PDMS/PS Nanofibrous Membranes for Carbon Dioxide Capture, J. Mater. Chem. A 6(20) (2018) 9489–9497. 10.1039/C8TA00275D.
  • Vogt, M.; Goldschmidt, R.; Bathen, D.; Epp, B.; Fahlenkamp, H. Comparison of Membrane Contactor and Structured Packings for CO2 Absorption. Energy Procedia. 2011, 4, 1471–1477. DOI: 10.1016/j.egypro.2011.02.013.
  • Yan, S.; Fang, M.-X.; Zhang, W.-F.; Wang, S.-Y.; Xu, Z.-K.; Luo, Z.-Y.; Cen, K.-F., Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting, Fuel Process. Technol. 88(5) (2007) 501–511. 10.1016/j.fuproc.2006.12.007.
  • Chen, Z.; Shen, Q.; Gong, H.; Du, M. Preparation of a Novel Dual-Layer Polyvinylidene Fluoride Hollow Fiber Composite Membrane with Hydrophobic Inner Layer for Carbon Dioxide Absorption in a Membrane Contactor. Sep. Purif. Technol. 2020, 248, 117045. DOI: 10.1016/j.seppur.2020.117045.
  • Talavari, A.; Ghanavati, B.; Azimi, A.; Sayyahi, S. Preparation and Characterization of PVDF-Filled MWCNT Hollow Fiber Mixed Matrix Membranes for Gas Absorption by Al2O3 Nanofluid Absorbent via Gas–Liquid Membrane Contactor. Chem. Eng. Res. Des. 2020, 156, 478–494. DOI: 10.1016/j.cherd.2020.01.017.
  • Rezaei-DashtArzhandi, M.; Ismail, A. F.; Bakeri, G.; Hashemifard, S. A.; Matsuura, T., Effect of Hydrophobic Montmorillonite (MMT) on PVDF and PEI Hollow Fiber Membranes in Gas–Liquid Contacting Process: A Comparative Study, R.S.C. Adv 5(126) (2015) 103811–103821. 10.1039/C5RA21754G.
  • Rahbari-Sisakht, M.; Ismail, A. F.; Rana, D.; Matsuura, T., A Novel Surface Modified Polyvinylidene Fluoride Hollow Fiber Membrane Contactor for CO2 Absorption, J. Memb. Sci. 415–416 (2012) 221–228. 10.1016/j.memsci.2012.05.002.
  • Mansourizadeh, A.; Aslmahdavi, Z.; Ismail, A. F.; Matsuura, T. Blend Polyvinylidene Fluoride/Surface Modifying Macromolecule Hollow Fiber Membrane Contactors for CO2 Absorption. Int. J. Greenhouse Gas Con. 2014, 26, 83–92. DOI: 10.1016/j.ijggc.2014.04.027.
  • Amirabedi, P.; Yegani, R.; Hesaraki, A. H., Hydrophobicity Optimization of Polypropylene Hollow Fiber Membrane by Sol–Gel Process for CO2 Absorption in Gas–Liquid Membrane Contactor Using Response Surface Methodology, Iran. Polym. J. 26 (2017) 431–443. 10.1007/s13726-017-0532-2.
  • Li, Y.; Wang, L.; Hu, X.; Jin, P.; Song, X. Surface Modification to Produce Superhydrophobic Hollow Fiber Membrane Contactor to Avoid Membrane Wetting for Biogas Purification Under Pressurized Conditions. Sep. Purif. Technol. 2018, 194, 222–230. DOI: 10.1016/j.seppur.2017.11.041.
  • Lin, Y.; Xu, Y.; Loh, C. H.; Wang, R., Development of Robust Fluorinated TiO2/PVDF Composite Hollow Fiber Membrane for CO2 Capture in Gas-Liquid Membrane Contactor, Appl. Surf. Sci. 436 (2018) 670–681. 10.1016/j.apsusc.2017.11.263.
  • Xu, Y.; Lin, Y.; Lee, M.; Malde, C.; Wang, R., Development of Low Mass-Transfer-Resistance Fluorinated TiO 2 -SiO 2/PVDF Composite Hollow Fiber Membrane Used for Biogas Upgrading in Gas-Liquid Membrane Contactor, J. Memb. Sci. 552 (2018) 253–264. 10.1016/j.memsci.2018.02.016.
  • Lee, H. J.; Park, J. H. Effect of Hydrophobic Modification on Carbon Dioxide Absorption Using Porous Alumina (Al2o3) Hollow Fiber Membrane Contactor. J. Memb. Sci. 2016, 518, 79–87. DOI: 10.1016/j.memsci.2016.06.038.
  • Lin, Y.-F.; Ye, Q.; Hsu, S.-H.; Chung, T.-W. Reusable fluorocarbon-modified electrospun PDMS/PVDF nanofibrous membranes with excellent CO 2 absorption performance. Chem. Eng. J. 2016, 284, 888–895. DOI: 10.1016/j.cej.2015.09.063.
  • Lin, Y.-F.; Kuo, J.-W. Mesoporous Bis(trimethoxysilyl)hexane (BTMSH)/Tetraethyl Orthosilicate (TEOS)–Based Hybrid Silica Aerogel Membranes for CO2 Capture. Chem. Eng. J. 2016, 300, 29–35. DOI: 10.1016/j.cej.2016.04.119.
  • Lin, Y.-F.; Lin, Y.-J.; Lee, C.-C.; Lin, K.-Y. A.; Chung, T.-W.; Tung, K.-L., Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO 2 capture, J. Taiwan Inst. Chem. Eng. 87 (2018) 117–122. 10.1016/j.jtice.2018.03.019.
  • Gomez-Coma, L.; Garea, A.; Irabien, A., Carbon dioxide capture by [emim][Ac] ionic liquid in a polysulfone hollow fiber membrane contactor, Int. J. Greenhouse Gas Con. 52 (2016) 401–409. 10.1016/j.ijggc.2016.07.019.
  • Amde, M.; Liu, J.-F.; Pang, L., Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review, Environ. Sci. Technol 49(21) (2015) 12611–12627. 10.1021/acs.est.5b03123.
  • Simon, N. M.; Zanatta, M.; Neumann, J.; Girard, A.; Marin, G.; Stassen, H.; Dupont, J., Cation−anion−co 2 Interactions in Imidazolium-Based Ionic Liquid Sorbents, ChemPhyschem 19(21) (2018) 2879–2884. 10.1002/cphc.201800751.
  • Dai, Z.; Noble, R. D.; Gin, D. L.; Zhang, X.; Deng, L. Combination of Ionic Liquids with Membrane Technology: A New Approach for CO2 Separation. J. Memb. Sci. 2016, 497, 1–20. DOI: 10.1016/j.memsci.2015.08.060.
  • Shah Buddin, M. M. H.; Ahmad, A. L., Performance Evaluation of Supported Ionic Liquid Membranes (SILMs) Derived from Optimized PES/PDMS/ZIF-L Composites for CO 2 Separation, Ind. Eng. Chem. Res. 62(12) (2023) 5199–5215. 10.1021/acs.iecr.2c03935.
  • Wang, W.; Hou, Q.; Gong, K.; Yan, Y.; Zhang, J. Ionic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Appl. Surf. Sci. 2019, 494, 477–483. DOI: 10.1016/j.apsusc.2019.07.060.
  • Santos, E.; Albo, J.; Irabien, A. Acetate Based Supported Ionic Liquid Membranes (SILMs) for CO2 Separation: Influence of the Temperature. J. Memb. Sci. 2014, 452, 277–283. DOI: 10.1016/j.memsci.2013.10.024.
  • Ziobrowski, Z.; Rotkegel, A., Enhanced CO2/N2 Separation by Supported Ionic Liquid Membranes (SILMs) Based on PDMS and 1-Ethyl-3-Methylimidazolium Acetate, Chem. Eng. Commun. 208 (2021) 137–147. 10.1080/00986445.2019.1694916.
  • Fan, T.; Xie, W.; Ji, X.; Liu, C.; Feng, X.; Lu, X., CO2/N2 Separation Using Supported Ionic Liquid Membranes with Green and Cost-Effective [Choline][pro]/PEG200 Mixtures, Chin J Chem Eng 24 (2016) 1513–1521. 10.1016/j.cjche.2016.03.006. 11
  • Liu, Z.; Liu, C.; Li, L.; Qin, W.; Xu, A., CO 2 separation by supported ionic liquid membranes and prediction of separation performance, Int. J. Greenhouse Gas Con. 53 (2016) 79–84. 10.1016/j.ijggc.2016.07.041.
  • Zhang, X.-M.; Tu, Z.-H.; Li, H.; Li, L.; Wu, Y.-T.; Hu, X.-B., Supported Protic-Ionic-Liquid Membranes with Facilitated Transport Mechanism for the Selective Separation of CO2, J. Memb. Sci. 527 (2017) 60–67. 10.1016/j.memsci.2017.01.006.
  • Chen, D.; Ying, W.; Guo, Y.; Ying, Y.; Peng, X., Enhanced Gas Separation Through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane, ACS Appl. Mater. Interfaces 9(50) (2017) 44251–44257. 10.1021/acsami.7b15762.
  • Zhang, X.; Xiong, W.; Tu, Z.; Peng, L.; Wu, Y.; Hu, X., Supported Ionic Liquid Membranes with Dual-Site Interaction Mechanism for Efficient Separation of CO2, ACS Sustain. Chem. Eng. 7 (2019) 10792–10799. 10.1021/acssuschemeng.9b01604.
  • Liu, Y.-F.; Xu, Q.-Q.; Wang, Y.-Q.; Zhen, M.-Y.; Yin, J.-Z. Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids. J. Supercrit Fluids. 2018, 139, 88–96. DOI: 10.1016/j.supflu.2018.05.014.
  • Jindaratsamee, P.; Shimoyama, Y.; Morizaki, H.; Ito, A., Effects of Temperature and Anion Species on CO2 Permeability and CO2/N2 Separation Coefficient Through Ionic Liquid Membranes, J. Chem. Thermodyn. 43 (2011) 311–314. 10.1016/j.jct.2010.09.015.
  • Deimede, V.; Vroulias, D.; Kallitsis, J.; Ioannides, T. Pyridinium Based Poly(ionic Liquids) Membranes with Exceptional High Water Vapor Permeability and Selectivity. Sep. Purif. Technol. 2020, 251, 117412. DOI: 10.1016/j.seppur.2020.117412.
  • Zunita, M.; Hastuti, R.; Alamsyah, A.; Kadja, G. T. M.; Khoiruddin, K.; Kurnia, K. A.; Yuliarto, B.; Wenten, I. G., Polyionic liquid membrane: Recent development and perspective, J. Ind. Eng. Chem. 113 (2022) 96–123. 10.1016/j.jiec.2022.06.027.
  • Bara, J. E.; Lessmann, S.; Gabriel, C. J.; Hatakeyama, E. S.; Noble, R. D.; Gin, D. L., Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids As Gas Separation Membranes, Ind. Eng. Chem. Res. 46 (2007) 5397–5404. 10.1021/ie0704492.
  • Vollas, A.; Chouliaras, T.; Deimede, V.; Ioannides, T.; Kallitsis, J., New Pyridinium Type Poly(Ionic Liquids) As Membranes for CO2 Separation, Polymers 10(8) (2018) 912. 10.3390/polym10080912.
  • Tomé, L. C.; Guerreiro, D. C.; Teodoro, R. M.; Alves, V. D.; Marrucho, I. M. Effect of Polymer Molecular Weight on the Physical Properties and CO2/N2 Separation of Pyrrolidinium-Based Poly(ionic Liquid) Membranes. J. Memb. Sci. 2018, 549, 267–274. DOI: 10.1016/j.memsci.2017.12.019.
  • Chen, H. Z.; Li, P.; Chung, T.-S., PVDF/Ionic Liquid Polymer Blends with Superior Separation Performance for Removing CO2 from Hydrogen and Flue Gas, Int. J. Hydrogen. Energy. 37(16) (2012) 11796–11804. 10.1016/j.ijhydene.2012.05.111.
  • Kasahara, S.; Kamio, E.; Yoshizumi, A.; Matsuyama, H., Polymeric Ion-Gels Containing an Amino Acid Ionic Liquid for Facilitated CO 2 Transport Media, Chem. Commun. 50(23) (2014) 2996–2999. 10.1039/C3CC48231F.
  • Zarca, G.; Horne, W. J.; Ortiz, I.; Urtiaga, A.; Bara, J. E. Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt. J. Memb. Sci. 2016, 515, 109–114. DOI: 10.1016/j.memsci.2016.05.045.
  • Simons, K.; Nijmeijer, K.; Bara, J. E.; Noble, R. D.; Wessling, M., How Do Polymerized Room-Temperature Ionic Liquid Membranes Plasticize During High Pressure CO2 Permeation?, J. Memb. Sci. 3601–2 (2010) 202–209. 10.1016/j.memsci.2010.05.018.
  • Hudiono, Y. C.; Carlisle, T. K.; LaFrate, A. L.; Gin, D. L.; Noble, R. D., Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Memb. Sci. 370 (2011) 141–148. 10.1016/j.memsci.2011.01.012.
  • Huang, K.; Zhang, X.-M.; Li, Y.-X.; Wu, Y.-T.; Hu, X.-B. Facilitated Separation of CO2 and SO2 Through Supported Liquid Membranes Using Carboxylate-Based Ionic Liquids. J. Memb. Sci. 2014, 471, 227–236. DOI: 10.1016/j.memsci.2014.08.022.
  • Tomé, L. C.; Aboudzadeh, M. A.; Rebelo, L. P. N.; Freire, C. S. R.; Mecerreyes, D.; Marrucho, I. M., Polymeric Ionic Liquids with Mixtures of Counter-Anions: A New Straightforward Strategy for Designing Pyrrolidinium-Based CO2 Separation Membranes, J. Mater. Chem. A 1(35) (2013) 10403. 10.1039/c3ta12174g.
  • Dong, L.; Chen, M.; Wu, X.; Shi, D.; Dong, W.; Zhang, H.; Zhang, C., Multi-Functional Polydopamine Coating: Simultaneous Enhancement of Interfacial Adhesion and CO2 Separation Performance of Mixed Matrix Membranes, New. J. Chem. 40 (2016) 9148–9159. 10.1039/C6NJ02013E. 11
  • Lin, R.; Ge, L.; Hou, L.; Strounina, E.; Rudolph, V.; Zhu, Z., Mixed Matrix Membranes with Strengthened MOFs/Polymer Interfacial Interaction and Improved Membrane Performance, ACS Appl. Mater. Interfaces 6(8) (2014) 5609–5618. 10.1021/am500081e.
  • Wenten, I. G.; Victoria, A. V.; Tanukusuma, G.; Khoiruddin, K.; Zunita, M. Simultaneous Clarification and Dehydration of Crude Palm Oil Using Superhydrophobic Polypropylene Membrane. J. Food Eng. 2019, 248, 23–27. DOI: 10.1016/j.jfoodeng.2018.12.010.
  • Rostami, S.; Keshavarz, P.; Raeissi, S. Experimental Study on the Effects of an Ionic Liquid for CO2 Capture Using Hollow Fiber Membrane Contactors. Int. J. Greenhouse Gas Con. 2018, 69, 1–7. DOI: 10.1016/j.ijggc.2017.12.002.
  • Gómez-Coma, L.; Garea, A.; Irabien, A., Non-Dispersive Absorption of CO2 in [Emim][etso4] and [Emim][ac]: Temperature Influence, Sep. Purif. Technol. 132 (2014) 120–125. 10.1016/j.seppur.2014.05.012.
  • Gomez-Coma, L.; Garea, A.; Rouch, J. C.; Savart, T.; Lahitte, J. F.; Remigy, J. C.; Irabien, A. Membrane Modules for CO 2 Capture Based on PVDF Hollow Fibers with Ionic Liquids Immobilized. J. Memb. Sci. 2016, 498, 218–226. DOI: 10.1016/j.memsci.2015.10.023.
  • Albo, J.; Irabien, A., Non-Dispersive Absorption of CO 2 in Parallel and Cross-Flow Membrane Modules Using EMISE, J. Chem. Technol. Biotechnol 87(10) (2012) 1502–1507. 10.1002/jctb.3790.
  • Lu, J.-G.; Lu, Z.-Y.; Chen, Y.; Wang, J.-T.; Gao, L.; Gao, X.; Tang, Y.-Q.; Liu, D.-G., CO2 absorption into aqueous blends of ionic liquid and amine in a membrane contactor, Sep. Purif. Technol. 150 (2015) 278–285. 10.1016/j.seppur.2015.07.010.
  • Ahmad, A. L.; Otitoju, T. A.; Ooi, B. S. Hollow Fiber (HF) Membrane Fabrication: A Review on the Effects of Solution Spinning Conditions on Morphology and Performance. J. Ind. Eng. Chem. 2019, 70, 35–50. DOI: 10.1016/j.jiec.2018.10.005.
  • Xu, H.; Easa, J.; Pate, S. G.; Jin, R.; O’Brien, C. P., Operando Surface-Enhanced Raman-Scattering (SERS) for Probing CO 2 Facilitated Transport Mechanisms of Amine-Functionalized Polymeric Membranes, ACS Appl. Mater. Interfaces 14(13) (2022) 15697–15705. 10.1021/acsami.2c02769.
  • Noble, R. D.; Koval, C. A. Review of Facilitated Transport Membranes. In Materials Science of Membranes for Gas and Vapor Separation; Wiley: 2006; pp. 411–435. DOI:10.1002/047002903X.ch17
  • Han, Y.; Ho, W. S. W., Recent Advances in Polymeric Facilitated Transport Membranes for Carbon Dioxide Separation and Hydrogen Purification, J. Polym. Sci. 58(18) (2020) 2435–2449. 10.1002/pol.20200187.
  • Han, Y.; Yang, Y.; Ho, W. S. W., Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas, Membranes 10(11) (2020) 365. 10.3390/membranes10110365.
  • Zhao, Y.; Ho, W. S. W., CO2-Selective Membranes Containing Sterically Hindered Amines for CO2/H2 Separation, Ind. Eng. Chem. Res. 52(26) (2013) 8774–8782. 10.1021/ie301397m.
  • Zhang, C.; Wang, Z.; Cai, Y.; Yi, C.; Yang, D.; Yuan, S. Investigation of Gas Permeation Behavior in Facilitated Transport Membranes: Relationship Between Gas Permeance and Partial Pressure. Chem. Eng. J. 2013, 225, 744–751. DOI: 10.1016/j.cej.2013.03.100.
  • Wu, H.; Li, Q.; Guo, B.; Sheng, M.; Wang, D.; Mao, S.; Ye, N.; Qiao, Z.; Kang, G.; Cao, Y., et al. Industrial-scale spiral-wound facilitated transport membrane modules for post-combustion CO2 capture: Development, investigation and optimization. J. Memb. Sci. 2023, 670, 121368. DOI: 10.1016/j.memsci.2023.121368.
  • Ho, W. S. W.; Han, Y. Novel CO2-Selective Membranes for CO2 Capture from <1% CO2 Sources; Pittsburgh, PA, and Morgantown, WV (United States), 2019. DOI:10.2172/1574273.
  • Office of Clean Energy Demonstrations, Carbon Capture Demonstration Projects Program Front-End Engineering Design (FEED) Studies Selections for Award Negotiations, (2022). https://www.energy.gov/oced/carbon-capture-demonstration-projects-program-front-end-engineering-design-feed-studies (accessed Aug 21, 2023).
  • Favre, E., Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects, Membranes 12(9) (2022) 884. 10.3390/membranes12090884.
  • Font-Palma, C.; Cann, D.; Udemu, C., Review of Cryogenic Carbon Capture Innovations and Their Potential Applications, C — J. Carbon Res 7(3) (2021) 58. 10.3390/c7030058.
  • Hoeger, C.; Burt, S.; Baxter, L., Cryogenic Carbon CaptureTM Technoeconomic Analysis, SSRN Electron. J (2021). 10.2139/ssrn.3820158.
  • Pichot, D.; Granados, L.; Morel, T.; Schuller, A.; Dubettier, R.; Lockwood, F., Start-up of Port-Jérôme CRYOCAPTM Plant: Optimized Cryogenic CO2 Capture from H2 Plants, Energy Procedia 114 (2017) 2682–2689. 10.1016/j.egypro.2017.03.1532.
  • Baxter, L.; Hoeger, C.; Stitt, K.; Burt, S.; Baxter, A. Cryogenic Carbon CaptureTM (CCC) Status Report. SSRN Electron. J. 2021. 1–11. DOI: 10.2139/ssrn.3819906
  • Kim, Y.; Lee, J.; Cho, H.; Kim, J., Novel Cryogenic Carbon Dioxide Capture and Storage Process Using LNG Cold Energy in a Natural Gas Combined Cycle Power Plant, Chem. Eng. J. 456 (2023) 140980. 10.1016/j.cej.2022.140980.
  • Wynveen, R. A.; Quattrone, P. D., Electrochemical carbon dioxide concentrating system, ASME Life Support Conference, San Francisco, CA, 1971.
  • Zhang, P.; Tong, J.; Huang, K. Electrochemical CO2 Capture and Conversion. In Materials and Processes for CO2 Capture, Conversion, and Sequestration; Wiley: 2018; pp. 213–266. DOI:10.1002/9781119231059.ch5
  • Rheinhardt, J. H.; Singh, P.; Tarakeshwar, P.; Buttry, D. A., Electrochemical Capture and Release of Carbon Dioxide, Acs. Energy. Lett. 2 (2017) 454–461. 10.1021/acsenergylett.6b00608. 2
  • Voskian, S.; Hatton, T. A., Faradaic electro-swing reactive adsorption for CO2 capture, Energy Environ. Sci. 12 (2019) 3530–3547. 10.1039/C9EE02412C. 12
  • Eisaman, M. D.; Alvarado, L.; Larner, D.; Wang, P.; Garg, B.; Littau, K. A., CO2 Separation Using Bipolar Membrane Electrodialysis, Energy Environ. Sci. 4(4) (2011) 1319–1328. 10.1039/C0EE00303D.
  • Ding, Y.; Li, Y.; Yu, G., Exploring Bio-Inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study, Chem 1 (2016) 790–801. 10.1016/j.chempr.2016.09.004. 5
  • Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y., Universal quinone electrodes for long cycle life aqueous rechargeable batteries, Nat. Mater. 16(8) (2017) 841–848. 10.1038/nmat4919.
  • Yin, W.; Grimaud, A.; Azcarate, I.; Yang, C.; Tarascon, J.-M., Electrochemical Reduction of CO2 Mediated by Quinone Derivatives: Implication for Li–CO2 Battery, J. Phys. Chem. C 122(12) (2018) 6546–6554. 10.1021/acs.jpcc.8b00109.
  • Shaw, R. A.; Hatton, T. A. Electrochemical CO2 Capture Thermodynamics. Int. J. Greenhouse Gas Con. 2020, 95, 102878. DOI: 10.1016/j.ijggc.2019.102878.
  • Choi, G. H.; Song, H. J.; Lee, S.; Kim, J. Y.; Moon, M.-W.; Yoo, P. J. Electrochemical direct CO2 capture technology using redox-active organic molecules to achieve carbon-neutrality. Nano. Energy. 2023, 112, 108512. DOI: 10.1016/j.nanoen.2023.108512.
  • Xia, Q.; Zhang, K.; Zheng, T.; An, L.; Xia, C.; Zhang, X., Integration of CO2 Capture and Electrochemical Conversion, Acs. Energy. Lett. 8(6) (2023) 2840–2857. 10.1021/acsenergylett.3c00738.
  • Chen, C.; Khosrowabadi Kotyk, J. F.; Sheehan, S. W., Progress Toward Commercial Application of Electrochemical Carbon Dioxide Reduction, Chem 4(11) (2018) 2571–2586. 10.1016/j.chempr.2018.08.019.
  • Wenten, I. G.; Khoiruddin, K.; Alkhadra, M. A.; Tian, H.; Bazant, M. Z. Novel Ionic Separation Mechanisms in Electrically Driven Membrane Processes. Adv. Colloid Interface Sci. 2020, 284, 102269. DOI: 10.1016/j.cis.2020.102269.
  • Bagastyo, A. Y.; Anggrainy, A. D.; Khoiruddin, K.; Ursada, R.; Warmadewanthi, I.; Wenten, I. G., Electrochemically-Driven Struvite Recovery: Prospect and Challenges for the Application of Magnesium Sacrificial Anode, Sep. Purif. Technol. 288 (2022) 120653. 10.1016/j.seppur.2022.120653.
  • Valluri, S.; Kawatra, S. K., Reduced Reagent Regeneration Energy for CO2 Capture with Bipolar Membrane Electrodialysis, Fuel Process. Technol. 213 (2021) 106691. 10.1016/j.fuproc.2020.106691.
  • Kim, J.; Moon, I.; Kim, J. Integration of Wastewater Electro-Electrodialysis and CO2 Capture for Sustainable LIB Recycling: Process Design and Economic Analyses. J. Clean. Prod. 2023, 391, 136241. DOI: 10.1016/j.jclepro.2023.136241.
  • Song, Z.; Sun, G.; Wang, Z.; Yuan, S.; Xi, C., Design and Study of a Novel Ammonia-Based CO2 Capture Process with Bipolar Membrane Electrodialysis, Can. J. Chem. Eng. (2023). 10.1002/cjce.25075. 102(2) 658–668
  • Jiang, C.; Zhang, Y.; Feng, H.; Wang, Q.; Wang, Y.; Xu, T., Simultaneous CO2 capture and amino acid production using bipolar membrane electrodialysis (BMED)), J. Memb. Sci. 542 (2017) 264–271. 10.1016/j.memsci.2017.08.004.
  • Bazhenov, S.; Vasilevsky, V.; Rieder, A.; Unterberger, S.; Grushevenko, E.; Volkov, V.; Schallert, B.; Volkov, A. Heat Stable Salts (HSS) Removal by Electrodialysis: Reclaiming of MEA Used in Post-Combustion CO2-Capture. Energy Procedia. 2014, 63, 6349–6356. DOI: 10.1016/j.egypro.2014.11.668.
  • Bazhenov, S.; Rieder, A.; Schallert, B.; Vasilevsky, V.; Unterberger, S.; Grushevenko, E.; Volkov, V.; Volkov, A., Reclaiming of Degraded MEA Solutions by Electrodialysis: Results of ED Pilot Campaign at Post-Combustion CO 2 Capture Pilot Plant, Int. J. Greenhouse Gas Con. 42 (2015) 593–601. 10.1016/j.ijggc.2015.09.015.
  • Wang, Q.; Jiang, C.; Wang, Y.; Yang, Z.; Xu, T., Reclamation of Aniline Wastewater and CO2 Capture Using Bipolar Membrane Electrodialysis, ACS Sustain. Chem. Eng. 4 (2016) 5743–5751. 10.1021/acssuschemeng.6b01686.
  • Taniguchi, I.; Yamada, T. Low Energy CO2 Capture by Electrodialysis. Energy Procedia. 2017, 114, 1615–1620. DOI: 10.1016/j.egypro.2017.03.1902.
  • Chen, T.; Bi, J.; Zhao, Y.; Du, Z.; Guo, X.; Yuan, J.; Ji, Z.; Liu, J.; Wang, S.; Li, F., et al., Carbon dioxide capture coupled with magnesium utilization from seawater by bipolar membrane electrodialysis, Sci. Total Environ. 820 (2022) 153272. 10.1016/j.scitotenv.2022.153272. 2022
  • Kim, H.; Kim, Y.-E.; Jeong, N.-J.; Hwang, K.-S.; Han, J.-H.; Nam, J.-Y.; Jwa, E.; Nam, S.-C.; Park, S.-Y.; Yoon, Y.-I., et al., Innovative Reverse-Electrodialysis Power Generation System for Carbon Capture and Utilization, J. CO2 Util. 20 (2017) 312–317. 10.1016/j.jcou.2017.05.025.
  • Sharifian, R.; van der Wal, H. C.; Wagterveld, R. M.; Vermaas, D. A., Fouling Management in Oceanic Carbon Capture via in-Situ Electrochemical Bipolar Membrane Electrodialysis, Chem. Eng. J. 458 (2023). 10.1016/j.cej.2023.141407. 141407
  • Mustafa, J.; Mohammad, A. F.; Mourad, A. A.-H. I.; Al-Marzouqi, A. H.; El-Naas, M. H., Treatment of saline wastewater and carbon dioxide capture using electrodialysis, in: 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA), IEEE, 2021: pp. 158–162. 10.1109/ICREGA50506.2021.9388277.
  • Mustafa, J.; Al-Marzouqi, A. H.; Ghasem, N.; El-Naas, M. H.; Van der Bruggen, B., Electrodialysis Process for Carbon Dioxide Capture Coupled with Salinity Reduction: A Statistical and Quantitative Investigation, Desalination 548 (2023) 116263. 10.1016/j.desal.2022.116263.
  • Shuangchen, M.; Tingting, H.; Lan, M.; Jingxiang, M.; Gongda, C.; Jing, Y., Experimental study on desorption of simulated solution after ammonia carbon capture using bipolar membrane electrodialysis, Int. J. Greenhouse Gas Con. 42 (2015) 690–698. 10.1016/j.ijggc.2015.09.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.