53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of proton exchange membrane fuel cells adopting rectangular-baffle and tapered flow channels with an equivalent average depth

, , &
Received 09 Jan 2024, Accepted 20 Apr 2024, Published online: 02 May 2024

References

  • Akhtar, N., and K. PJAM. 2011. Dynamic behavior of liquid water transport in a tapered channel of a proton exchange membrane fuel cell cathode. International Journal of Hydrogen Energy 36 (4):3076–86. doi:10.1016/j.ijhydene.2010.11.096.
  • Ashrafi, M., M. Shams, A. Bozorgnezhad, and G. Ahmadi. 2016. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells. Heat and Mass Transfer 52 (12):2671–86. doi:10.1007/s00231-016-1771-z.
  • Berning, T., and N. Djilali. 2003. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell—a parametric study. Journal of Power Sources 124 (2):440–52. doi:10.1016/S0378-7753(03)00816-4.
  • Chen, H., H. Guo, F. Ye, and M. A. CF. 2022. Cell performance and flow losses of proton exchange membrane fuel cells with orientated-type flow channels. Renewable Energy 181:1338–52. doi:10.1016/j.renene.2021.09.107.
  • Chen, H., H. Guo, F. Ye, and C. F. Ma. 2020. Experimental investigations on cell performance of proton exchange membrane fuel cells with orientated-type flow channels. Journal of Energy Engineering 146 (6). doi:10.1061/(ASCE)EY.1943-7897.0000717.
  • Chen, H., H. Guo, F. Ye, and C. F. Ma. 2021. Forchheimer’s inertial effect on liquid water removal in proton exchange membrane fuel cells with baffled flow channels. International Journal of Hydrogen Energy 46 (3):2990–3007. doi:10.1016/j.ijhydene.2020.05.082.
  • Chen, H., H. Guo, F. Ye, C. F. Ma, Q. Liao, and X. Zhu. 2019. Mass transfer in proton exchange membrane fuel cells with baffled flow channels and a porous‐blocked baffled flow channel design. International Journal of Energy Research 43 (7):2910–29. doi:10.1002/er.4461.
  • Chen, X., S. Long, C. Wang, F. Chai, L. Li, P. Duan, S. Li, Z. Wan, and Z. Qu. 2023. Comprehensive assessment on a hybrid PEMFC multi-generation system integrated with solar-assisted methane cracking. International Journal of Hydrogen Energy 48 (37):14025–37. doi:10.1016/j.ijhydene.2022.12.238.
  • Chen, X., C. Wang, J. Xu, S. Long, F. Chai, W. Li, X. Song, X. Wang, and Z. Wan. 2023. Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy. Applied Energy 343:121182. doi:10.1016/j.apenergy.2023.121182.
  • Chen, C., C. Wang, and Z. Zhang. 2023. Numerical investigation of the water transport and performance of proton exchange membrane fuel cell with an imitating river flow field. Energy Conversion & Management 276:116532. doi:10.1016/j.enconman.2022.116532.
  • Cooper, N. J., A. D. Santamaria, M. K. Becton, and J. W. Park. 2017. Investigation of the performance improvement in decreasing aspect ratio interdigitated flow field PEMFCs. Energy Conversion & Management 136:307–17. doi:10.1016/j.enconman.2017.01.005.
  • Ding, R., S. Zhang, Y. Chen, Z. Rui, K. Hua, Y. Wu, X. Li, X. Duan, X. Wang, J. Li, et al. 2022. Application of machine learning in optimizing proton exchange membrane fuel cells: A review. Energy and AI 9:100170. doi:10.1016/j.egyai.2022.100170.
  • Dong, P., G. Xie, and M. Ni. 2020. The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell. Energy 206:117977. doi:10.1016/j.energy.2020.117977.
  • Fan, L., G. Zhang, and K. Jiao. 2017. Characteristics of PEMFC operating at high current density with low external humidification. Energy Conversion & Management 150:763–74. doi:10.1016/j.enconman.2017.08.034.
  • Feng, Z., J. Huang, S. Jin, G. Wang, and Y. Chen. 2022. Artificial intelligence-based multi-objective optimisation for proton exchange membrane fuel cell: A literature review. Journal of Power Sources 520:230808. doi:10.1016/j.jpowsour.2021.230808.
  • Ghanbarian, A., and M. J. Kermani. 2016. Enhancement of PEM fuel cell performance by flow channel indentation. Energy Conversion & Management 110:356–66. doi:10.1016/j.enconman.2015.12.036.
  • Ghanbarian, A., M. J. Kermani, J. Scholta, and M. Abdollahzadeh. 2018. Polymer electrolyte membrane fuel cell flow field design criteria – application to parallel serpentine flow patterns. Energy Conversion & Management 166:281–96. doi:10.1016/j.enconman.2018.04.018.
  • Grigoriev, S. A., P. Millet, K. A. Dzhus, H. Middleton, T. O. Saetre, and V. N. Fateev. 2010. Design and characterization of bi-functional electrocatalytic layers for application in PEM unitized regenerative fuel cells. International Journal of Hydrogen Energy 35 (10):5070–76. doi:10.1016/j.ijhydene.2009.08.081.
  • Guo, H., H. Chen, F. Ye, and C. F. Ma. 2019. Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels. International Journal of Energy Research 43 (7):2737–55. doi:10.1002/er.4328.
  • Guo, N., M. C. Leu, and U. O. Koylu. 2013. Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy 38 (16):6750–61. doi:10.1016/j.ijhydene.2013.03.066.
  • Hong, B. K., and S. H. Kim. 2018. (Invited) recent advances in fuel cell electric vehicle technologies of Hyundai. ECS Transactions 86 (13):3. doi:10.1149/08613.0003ecst.
  • Huo, W., B. Xie, S. Wu, L. Wu, G. Zhang, H. Zhang, Z. Qin, Y. Zhu, R. Wang, K. Jiao, et al. 2024. Full-scale multiphase simulation of automobile PEM fuel cells with different flow field configurations. International Journal of Green Energy 21(1):154–69. doi:10.1080/15435075.2023.2194978.
  • Inoue, G., Y. Matsukuma, and M. Minemoto. 2006. Effect of gas channel depth on current density distribution of polymer electrolyte fuel cell by numerical analysis including gas flow through gas diffusion layer. Journal of Power Sources 157 (1):136–52. doi:10.1016/j.jpowsour.2005.08.004.
  • Jang, J., C. Cheng, W. Liao, Y. Huang, and Y. Tsai. 2012. Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels. Applied Energy 99:67–79. doi:10.1016/j.apenergy.2012.04.011.
  • Jeon, D. H., S. Greenway, S. Shimpalee, and J. W. Van Zee. 2008. The effect of serpentine flow-field designs on PEM fuel cell performance. International Journal of Hydrogen Energy 33 (3):1052–66. doi:10.1016/j.ijhydene.2007.11.015.
  • Kang, H. C., K. M. Jum, and Y. J. Sohn. 2019. Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate. International Journal of Hydrogen Energy 44 (43):24036–42. doi:10.1016/j.ijhydene.2019.07.120.
  • Lei, H., H. Huang, C. Li, M. Pan, X. Guo, Y. Chen, M. Liu, and T. Wang. 2020. Numerical simulation of water droplet transport characteristics in cathode channel of proton exchange membrane fuel cell with tapered slope structures. International Journal of Hydrogen Energy 45 (53):29331–44. doi:10.1016/j.ijhydene.2020.07.213.
  • Li, X., and I. Sabir. 2005. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy 30 (4):359–71. doi:10.1016/j.ijhydene.2004.09.019.
  • Li, W., Q. Zhang, C. Wang, X. Yan, S. Shen, G. Xia, F. Zhu, and J. Zhang. 2017. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Applied Energy 195:278–88. doi:10.1016/j.apenergy.2017.03.008.
  • Maharudrayya, S., S. Jayanti, and A. P. Deshpande. 2005. Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells. Journal of Power Sources 144 (1):94–106. doi:10.1016/j.jpowsour.2004.12.018.
  • Maharudrayya, S., S. Jayanti, and A. P. Deshpande. 2006. Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks. Journal of Power Sources 157 (1):358–67. doi:10.1016/j.jpowsour.2005.07.064.
  • Maher, A. R., and A. B. Sadiq. 2013. PEM fuel cells: fundamentals, modeling, and applications. Washington: Create Space Independent Publishing Platform.
  • Mancusi, E., É. Fontana, A. A. Ulson De Souza, and G. Ulson De Souza SMA. 2014. Numerical study of two-phase flow patterns in the gas channel of PEM fuel cells with tapered flow field design. International Journal of Hydrogen Energy 39 (5):2261–73. doi:10.1016/j.ijhydene.2013.11.106.
  • Marr, C., and X. Li. 1999. Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell. Journal of Power Sources 77 (1):17–27. doi:10.1016/S0378-7753(98)00161-X.
  • Osanloo, B., A. Mohammadi-Ahmar, and A. Solati. 2016. A numerical analysis on the effect of different architectures of membrane, CL and GDL layers on the power and reactant transportation in the square tubular PEMFC. International Journal of Hydrogen Energy 41 (25):10844–53. doi:10.1016/j.ijhydene.2016.04.228.
  • Perng, S., and H. Wu. 2011. Non-isothermal transport phenomenon and cell performance of a cathodic PEM fuel cell with a baffle plate in a tapered channel. Applied Energy 88 (1):52–67. doi:10.1016/j.apenergy.2010.07.006.
  • Perng, S., and H. Wu. 2015. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC. Applied Energy 143:81–95. doi:10.1016/j.apenergy.2014.12.059.
  • Perng, S. W., and H. W. Wu. 2015. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC. Applied Energy 14:381–95. doi:10.1016/j.apenergy.2014.12.059.
  • Qiao, J. N., H. Guo, F. Ye, and H. Chen. 2024. A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells. Applied Energy 357:122474. doi:10.1016/j.apenergy.2023.122474.
  • Ribeirinha, P., M. Abdollahzadeh, A. Pereira, F. Relvas, M. Boaventura, and A. Mendes. 2018. High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling. Applied Energy 215:659–69. doi:10.1016/j.apenergy.2018.02.029.
  • Ruan, H., C. Wu, S. Liu, and T. Chen. 2016. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells. Heat and Mass Transfer 52 (10):2167–76. doi:10.1007/s00231-015-1737-6.
  • Sajid Hossain, M., B. Shabani, and C. P. Cheung. 2017. Enhanced gas flow uniformity across parallel channel cathode flow field of proton exchange membrane fuel cells. International Journal of Hydrogen Energy 42 (8):5272–83. doi:10.1016/j.ijhydene.2016.11.042.
  • Takalloo, P. K., E. S. Nia, and M. Ghazikhani. 2016. Numerical and experimental investigation on effects of inlet humidity and fuel flow rate and oxidant on the performance on polymer fuel cell. Energy Conversion & Management 114:290–302. doi:10.1016/j.enconman.2016.01.075.
  • Valentín-Reyes, J., M. I. León, T. Pérez, T. Romero-Castañón, J. Beltrán, J. R. Flores-Hernández, Nava, J. L. 2022. Simulation of an interdigitated flow channel assembled in a proton exchange membrane fuel cell (PEMFC). International Journal of Heat & Mass Transfer 194:123026. doi:10.1016/j.ijheatmasstransfer.2022.123026.
  • Vijayakumar, R., M. Rajkumar, P. Sridhar, and S. Pitchumani. 2012. Effect of anode and cathode flow field depths on the performance of liquid feed direct methanol fuel cells (DMFCs). Journal of Applied Electrochemistry 42 (5):319–24. doi:10.1007/s10800-012-0396-2.
  • Wang, Y., X. Liao, G. Liu, H. Xu, C. Guan, H. Wang, H. Li, W. He, and Y. Qin. 2023. Review of flow field designs for polymer electrolyte membrane fuel cells. Energies (Basel) 16 (10):4207. doi:10.3390/en16104207.
  • Wang, Z., Z. Liu, L. Fan, Q. Du, and K. Jiao. 2023. Application progress of small-scale proton exchange membrane fuel cell. Energy Reviews 2 (2):100017. doi:10.1016/j.enrev.2023.100017.
  • Wang, C., Y. Ou, B. Wu, S. Thangavel, S. Hong, W. Chung, and W.-M. Yan. 2017. A modified serpentine flow slab for in Proton Exchange Membrane Fuel Cells (PEMFCs). Energy Procedia 142:667–73. doi:10.1016/j.egypro.2017.12.110.
  • Wang, Y., X. Wang, Y. Fan, W. He, J. Guan, and X. Wang. 2022. Numerical investigation of tapered flow field configurations for enhanced polymer electrolyte membrane fuel cell performance. Applied Energy 306:118021. doi:10.1016/j.apenergy.2021.118021.
  • Wilberforce, T., A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi. 2016. Advances in stationary and portable fuel cell applications. International Journal of Hydrogen Energy 41 (37):16509–22. doi:10.1016/j.ijhydene.2016.02.057.
  • Wu, H., G. Shih, and Y. Chen. 2018. Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement. Applied Energy 220:47–58. doi:10.1016/j.apenergy.2018.03.030.
  • Xing, L., X. Liu, T. Alaje, R. Kumar, M. Mamlouk, and K. Scott. 2014a. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73:618–34. doi:10.1016/j.energy.2014.06.065.
  • Xing, L., X. Liu, T. Alaje, R. Kumar, M. Mamlouk, and K. Scott. 2014b. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy (Oxford) 73:618–34. doi:10.1016/j.energy.2014.06.065.
  • Yan, W., H. Li, P. Chiu, and X. Wang. 2008. Effects of serpentine flow field with outlet channel contraction on cell performance of proton exchange membrane fuel cells. Journal of Power Sources 178 (1):174–80. doi:10.1016/j.jpowsour.2007.12.017.
  • Yan, W. M., H. C. Liu, C. Y. Soong, F. Chen, and C. H. Cheng. 2006. Numerical study on cell performance and local transport phenomena of PEM fuel cells with novel flow field designs. Journal of Power Sources 161 (2):907–19. doi:10.1016/j.jpowsour.2006.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.