23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biodiesel production and selected fuel qualities from prospective non-edible oils: Hevea brasiliensis, Madhuca longifolia, Azadirachta indica, and Gossypium hirsutum

Received 27 Dec 2023, Accepted 24 Apr 2024, Published online: 05 May 2024

References

  • Ahmad, M., L. K. Teong, S. Sultana, I. U. Khan, A. A. Zuhairi, M. Zafar, and F. Hassan. 2015. Optimization of biodiesel production from carthamus tinctorius L. Cv. Thori 78: A novel cultivar of safflower crop. International Journal of Green Energy 12 (5):447–52. doi:10.1080/15435075.2013.841165.
  • Ahmad, J., S. Yusup, A. Bokhari, and R. N. M. Kamil. 2014. Study of fuel properties of rubber seed oil based biodiesel. Energy Conversion and Management 78:266–75. doi:10.1016/j.enconman.2013.10.056.
  • Al-Dobouni, I. A., A. B. Fadhil, and I. K. Saeed. 2016. Optimized alkali-catalyzed transesterification of wild mustard (Brassica juncea L.) seed oil. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 38 (15):2319–25. doi:10.1080/15567036.2014.1002952.
  • Altikriti, E. T., A. B. Fadhil, and M. M. Dheyab. 2015. Two-step base-catalyzed transesterification of chicken fat: Optimization of parameters. Energy Sources, Part A 37 (17):1861–66. doi:10.1080/15567036.2012.654442.
  • American Society for Testing Materials. 2002. ASTM 6751-standard specification for biodiesel fuel (B100). Blend stock for distillate fuels. West Conshohocken PA, USA: ASTM.
  • Amios, D., F. Pedrotti, A. Nicolau, D. D. And Dalcen, F. M. Martini, and F. M. Dalcin. 2009. A transesterification double step process — TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Processing Technology 90 (4):599–605. doi:10.1016/j.fuproc.2008.12.011.
  • Arumugamurthi, S. S., P. Sivanandi, and S. Kandasamy. 2022. Biodiesel production from non-edible crops using waste tyre heterogeneous acid catalyst. Energy Sources A: Recovery Utilization, and Environmental Effects 44 (2):3223–38. doi:10.1080/15567036.2022.2062492.
  • Catarinoa, M., S. Martinsa, A. P. S. Dias, M. F. C. Pereiraa, and J. Gomes. 2019. Calcium diglyceroxide as a catalyst for biodiesel production. Journal of Environmental Chemical Engineering 7 (3):103099. doi:10.1016/j.jece.2019.103099.
  • Choe, E., and D. B. Min. 2006. Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety 5 (4):169–86. doi:10.1111/j.1541-4337.2006.00009.x.
  • Christie, W. W. 2003. 13-phenyltridec-9-enoic and 15-phenylpentadec-9-enoic acids in arum maculatum seed oil. European Journal of Lipid Science and Technology: EJLST 105 (12):779–80. doi:10.1002/ejlt.200300865.
  • Costa, J. A. V., L. Moraes, J. B. Moreira, G. M. da Rosa, A. S. A. Henrard, and M. G. de Morais. 2017. Microalgae-based biorefineries as a promising approach to biofuel production. Prospects and Challenges in Algal Biotechnology 113–40.
  • Darwin Thifal, M., M. Murizal, Z. Alwi, A. Rizal, M. Pratama, and M. Rizal. 2023. The synthesis of biodiesel from palm oil and waste cooking oil via electrolysis by various electrodes. Case Studies in Chemical and Environmental Engineering 8:100512. doi:10.1016/j.cscee.2023.100512.
  • De-Castro, M. L., and F. Priego-Capote. 2010. Soxhlet extraction: Past and present panacea. Journal of Chromatography A 1217 (16):2383–89. doi:10.1016/j.chroma.2009.11.027.
  • Deshpande, G., S. Shrikhande, D. S. Patle, and A. N. Sawarkar. 2022. Simultaneous optimization of economic, environmental and safety criteria for algal biodiesel process retrofitted using dividing wall column and multistage vapor recompression. Process Safety and Environmental Protection 164:1–14. doi:10.1016/j.psep.2022.05.059.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2015. Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil. Energy Conversion and Management 100:277–87. doi:10.1016/j.enconman.2015.04.083.
  • Dias, A. P. S., J. Puna, J. Gomes, M. J. N. Correia, and J. Bordado. 2016. Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renewable Energy 99:622–30. doi:10.1016/j.renene.2016.07.033.
  • Fadhil, A. B., A. M. Aziz, and M. H. Al-Tamer. 2016. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Conversion and Management 108:255–65. doi:10.1016/j.enconman.2015.11.013
  • Fadhil, A. B., M. M. Dheyab, and A. Q. Y. Abdul-Qader. 2012. Purification of biodiesel using activated carbons produced from spent tea waste. Arab Journal of Basic and Applied Sciences 1 (1):45–49. doi:10.1016/j.jaubas.2011.12.001
  • Ghulam, Y., 1. B. Muhammad, M. A. Tariq, M. Syed, R. N. Sibtain, and N. Farah. 2012. Quality of commercial high-speed diesel and its environmental impact. Journal of Petroleum Technology and Alternative Fuels 3 (3):29–35.
  • Guillen, M. D., and N. Cabo. 1997. Infrared spectroscopy in the study of edible oils and fats. Journal of the Science of Food and Agriculture 75 (1):1–11. doi:10.1002/(SICI)1097-0010(199709)75:1<1:AID-JSFA842>3.0.CO;2-R.
  • Gupta, J., M. Agarwal, and A. Dalai. 2020. An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. Journal of Industrial & Engineering Chemistry 88:58–77. doi:10.1016/j.jiec.2020.05.012.
  • Han, W., W. Jin, Z. Li, Y. Wei, Z. He, C. Chen, C. Qin, Y. Chen, R. Tu, and X. Zhou. 2021. Cultivation of microalgae for lipid production using municipal wastewater. Process Safety and Environmental Protection 155:155–65. doi:10.1016/j.psep.2021.09.014.
  • Huang, J., Y. Jian, H. Li, and Z. Fang. 2022. Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of jatropha oil to biodiesel. Catalysis Today 404:35–48. doi:10.1016/j.cattod.2022.04.016.
  • Jin, M., C. Sarks, B. D. Bals, N. Posawatz, C. Gunawan, B. E. Dale, and V. Balan. 2017. Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnology and Bioengineering 114 (5):980–89. doi:10.1002/bit.26229.
  • Karmakar, B., B. Ghosh, S. Samanta, and G. Halder. 2020. Sulfonated catalytic esterification of Madhuca indica oil using waste Delonix regia: L16 Taguchi optimization and kinetics. Sustainable Energy Technologies and Assessments 37:100568. doi:10.1016/j.seta.2019.100568.
  • Karmakar, B., J. B. Mishra, A. Datta, K. R. Muthangi, O. N. Tiwari, and G. Halder. 2021. Transesterifying Madhuca indica and waste cooking oil blends with C1–C3 alcohol mixtures: Two-step catalysis using Delonix regia and Mesua ferrea Linn supports. Biomass Conversion and Biorefinery 21 (8):7213–37. doi:10.1007/s13399-021-01640-5.
  • Karmakar, B., S. L. Rokhum, and G. Halder. 2022. Injecting superheated C1 and C3 alcohol supports towards non-catalytic semi-continuous conversion of Hevea brasiliensis oil into biodiesel. Fuel 314:122777. doi:10.1016/j.fuel.2021.122777.
  • Kedir, W. M., and T. G. Asere. 2022. Biodiesel production from waste frying oil using catalysts derived from waste materials. Journal of the Turkish Chemical Society Section A: Chemistry 9 (3):939–52. doi:10.18596/jotcsa.997456.
  • Khan, I. U. 2023. Biomass & bioenergy; case studies bioresources, chemical and biological processes, biomass products for sustainable, renewable energy and materials. Chemical Engineering and Process Technology 8 (2):1–7.
  • Khan, I. U. 2024. Analysis of biodiesel and fatty acids using state-of-the-art methods from non-edible plants seed oil; nicotiana tobaccum and Olea ferruginia. Process Safety and Environmental Protection 186:25–36.
  • Khan, I. U., and A. Haleem. 2022. A seed of albizzia julibrissin wild plant as an efficient source for biodiesel production. Biomass & Bioenergy 158:106381. doi:10.1016/j.biombioe.2022.106381.
  • Khan, I. U., A. Haleem, and A. S. Khan. 2022. Non-edible plant seeds of acacia farnesiana as a new and effective source for biofuel production. RSC Advances 12 (33):21223–34. doi:10.1039/D2RA03406A.
  • Khan, I. U., H. Long, and Y. Yu. 2023. Potential and comparative studies of six non-edible seed oil feedstock’s for biodiesel production. International Journal of Green Energy 1–22.
  • Khan, I. U., and S. A. H. Shah. 2021. Optimization and characterization of novel & non-edible seed oil sources for biodiesel production. IntechOpen 39–56.
  • Khan, I. U., Z. Yan, and J. Chen. 2019. Optimization, transesterification and analytical study of Rhus typhina non-edible seed oil as biodiesel production. Energies 12 (4290):1–21. doi:10.3390/en12224290.
  • Khan, I. U., Z. Yan, and J. Chen. 2020. Production and characterization of biodiesel derived from a novel source koelreuteria paniculata seed oil. Energies 13 (4):791. doi:10.3390/en13040791.
  • Kishore, S. C., S. Perumal, R. Atchudan, A. K. Sundramoorthy, M. Alagan, S. Sangaraju, and Y. R. Lee. 2022. A review of biomass-derived heterogeneous catalysts for biodiesel production. Catalysts 12 (12):1501. doi:10.3390/catal12121501.
  • Knothe, G., and R. O. Dunn. 2001. Biofuels derived from vegetable oils and fats. In Oleochemical manufacture and applications, ed. F. Gunstone and R. Hamilton, 106–63. UK: Sheffield Academic Press.
  • Knothe, G., and J. A. Kenar. 2004. Determination of the fatty acid profile by 1H‐NMR spectroscopy. European Journal of Lipid Science and Technology: EJLST 106 (2):88–96. doi:10.1002/ejlt.200300880.
  • Knothe, G., and K. R. Steidley. 2004. Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energy and Fuels 19 (3):1192–200. doi:10.1021/ef049684c.
  • Kumar, A., and S. Sharma. 2011. Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable and Sustainable Energy Reviews 15 (4):1791–800. doi:10.1016/j.rser.2010.11.020.
  • Li, G., R. Hu, N. Wang, T. Yang, F. Xu, J. Li, J. Wu, Z. Huang, M. Pan, and T. Lyu. 2022. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. Journal of Cleaner Production 355:131768. doi:10.1016/j.jclepro.2022.131768.
  • Maheswari, P., M. B. Haider1, M. Yusuf, J. J. Klemeš, A. Bokhari, M. Beg, A. A. Othman, R. Kumar1, and A. K. Jaiswal. 2022. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. Journal of Cleaner Production 22:131588. doi:10.1016/j.jclepro.2022.131588.
  • Mello, V. M., F. C. C. Oliveira, W. G. Fraga, C. J. D. Nascimento, and P. A. Z. Suarez. 2008. Determination of the content of fatty acid methyl esters (FAME) in biodiesel samples obtained by esterification using 1 H-NMR spectroscopy. Magnetic Resonance in Chemistry: MRC 46 (11):1051–54. doi:10.1002/mrc.2282
  • Monteiro, M., A. Ambrozin, L. Liao, and A. G. Ferreira. 2009. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel 88 (4):691–96. doi:10.1016/j.fuel.2008.10.010.
  • Morgenstern, I., J. Powlowski, and A. Tsang. 2014. Fungal cellulose degradation by oxidative enzymes: From dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family. Brief Function Genomics 13 (6):471–81. doi:10.1093/bfgp/elu032.
  • Mulkan, A., N. W. M. Zulkifli, H. Husin, I. Ahmadi Dahlan, S. Syafiie, and S. Syafiie. 2023. Development of jackfruit (Artocarpus heterophyllus) peel waste as a new solid catalyst: Biodiesel synthesis, optimization and characterization. Process Safety and Environmental Protection 177:152–68. doi:10.1016/j.psep.2023.07.021.
  • Mwangi, J. K., W. J. Lee, Y. C. Chang, C. Y. Chen, and L. C. Wang. 2015. An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines. Applied Energy 159:214–36. doi:10.1016/j.apenergy.2015.08.084.
  • Nakano, M., and K. Okawa. 2014. Study of oxygen-containing hydrocarbons in exhaust emission from a spark ignition combustion engine. International Journal of Engine Research 15 (5):572–80. doi:10.1177/1468087413498225
  • Ong, H. C., A. S. Silitonga, H. H. Masjuki, T. M. I. Mahlia, W. T. Chong, and M. H. Boosroh. 2013. Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, sterculia foetida, and Ceiba pentandra. Energy Conversion and Management 73:245–55. doi:10.1016/j.enconman.2013.04.011
  • Oyekunle, D. T., M. Barasa, E. A. Gendy, and S. K. Tiong. 2023. Heterogeneous catalytic transesterification for biodiesel production: Feedstock properties, catalysts and process parameters. Process Safety and Environmental Protection 177:844–67. doi:10.1016/j.psep.2023.07.064.
  • Ozcanli, M., C. Gungor, and K. Aydin. 2013. Biodiesel fuel specifications: A review. Energy sources A: Recovery util. Environmental Fuel Fee 35 (7):635–47. doi:10.1080/15567036.2010.503229.
  • Parida, S. S., M. Singh, and S. Pradhan. 2022. Biomass wastes: A potential catalyst source for biodieselproduction. Bioresource Technology Reports 18:101081. doi:10.1016/j.biteb.2022.101081.
  • Pasto, D., C. Johnson, and M. Miller. 1992. Experiments and techniques in organic chemistry. 1st ed. Upper Saddle River, NJ, USA: Prentice-Hall.
  • Pratas, M. J., S. V. Freitas, M. B. Oliveira, S. C. Monteiro, Á. S. Lima, and J. A. Coutinho. 2011. Biodiesel density: Experimental measurements and prediction models. Energy Fuels 25 (5):2333–40. doi:10.1021/ef2002124.
  • Rajendran, N., D. Kang, J. Han, and B. Gurunathan. 2022. Process optimization, economic and environmental analysis of biodiesel production from food waste using a citrus fruit peel biochar catalyst. Journal of Cleaner Production 365:132712. doi:10.1016/j.jclepro.2022.132712.
  • Rashed, M., M. Kalam, H. Masjuki, M. Mofijur, M. Rasul, and N. Zulkifli. 2016. Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Industrial Crops and Products 79:70–76. doi:10.1016/j.indcrop.2015.10.046
  • Röllin, H. 2017. Evidence for health effects of early life exposure to indoor air pollutants: What we know and what can be done. Clean Air Journal 27 (1):1–3. doi:10.17159/2410-972X/2017/v27n1a1.
  • Safar, M., D. Bertrand, P. Robert, M. F. Devaux, and C. Genot. 1994. Characterization of edible oils, butter, and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. Journal of the American Oil Chemists’ Society 71 (4):371. doi:10.1007/BF02540516.
  • Santos, S. M., D. C. Nascimento, M. C. Costa, A. M. Neto, and L. V. Fregolente. 2020. Flash point prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, and blends. Fuel 263:116375. doi:10.1016/j.fuel.2019.116375.
  • Singh, D., K. Subramanian, M. Juneja, K. Singh, S. Singh, R. Badola, and N. Singh. 2017. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy-duty diesel engine. Environmental Progress & Sustainable Energy 36 (1):214–21. doi:10.1002/ep.12439.
  • Sinha, P., M. A. Islam, M. S. Negi, and S. B. Tripathi. 2015. Changes in oil content and fatty acid composition in jatropha curcas during seed development. Industrial Crops and Products 77:508–10. doi:10.1016/j.indcrop.2015.09.025.
  • Sorate, K. A., and P. V. Bhale. 2015. Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews 41:777–98. doi:10.1016/j.rser.2014.08.079.
  • Soudagar, M. E. M., N. N. Nik-Ghazali, M. A. Kalam, I. A. Badruddin, N. R. Banapurmath, T. M. Y. Khan, M. Bashir, N. Akram, R. Farade, and A. Afzal. 2019. The effects of graphene oxide nanoparticle additive stably dispersed in dairy scum oil biodiesel-diesel fuel blend on CI engine: Performance, emission and combustion characteristics. Fuel 257:116015. doi:10.1016/j.fuel.2019.116015.
  • Tarigan, J. B., S. Perangin-Angin, S. R. Simanungkalit, N. P. Zega, and E. K. Sitepu. 2023. Utilization of waste banana peels as heterogeneous catalysts in room-temperature biodiesel production using a homogenizer. RSC Advances 13 (9):6217. doi:10.1039/D3RA00016H.
  • Tremblay, A. Y., and A. Montpetit. 2017. The in-process removal of sterol glycosides by ultrafiltration in biodiesel production. Biofuel Research Journal 4 (1):559–64. doi:10.18331/BRJ2017.4.1.6.
  • Ulakpa, W. C., R. O. E. Ulakpa, M. C. Egwunyenga, and T. C. Egbosiuba. 2022. Transesterification of non-edible oil and effects of process parameters on biodiesel yield. Clean Waste System 3:100047. doi:10.1016/j.clwas.2022.100047.
  • Vargas‐Lopez, J., D. Wiesenborn, K. Tostenson, and L. Cihacek. 1999. Processing of crambe for oil and isolation of erucic acid. Journal of the American Oil Chemists’ Society 76 (7):801–09. doi:10.1007/s11746-999-0069-4.
  • Wang, Y. F., K. L. Huang, C. T. Li, H. H. Mi, J. H. Luo, and P. J. Tsai. 2003. Emissions of fuel metals content from a diesel vehicle engine. Atmospheric Environment 37 (33):4637–43. doi:10.1016/j.atmosenv.2003.07.007.
  • Wang, W., F. Li, and Y. Li. 2020. Effect of biodiesel ester structure optimization on low temperature performance and oxidation stability. Journal of Materials Research and Technology 9 (3):2727–36. doi:10.1016/j.jmrt.2020.01.005.
  • Wang, L., H. Wang, J. Fan, and Z. Han. 2023. Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock – a review. Science of the Total Environment 904:166982. doi:10.1016/j.scitotenv.2023.166982.
  • Welter, R. A., H. S. Santana, L. G. D. L. Torre, M. C. Barnes, O. P. Taranto, and M. Oelgemoller. 2023. Biodiesel production by Heterogeneous catalysis and eco-friendly routes. ChemBioeng Reviews 10 (2):86–111. doi:10.1002/cben.202200062.
  • Younis, M. N., M. S. Saeed, S. Khan, M. U. Furqan, R. U. Khan, and M. Saleem. 2009. Production and characterization of biodiesel from waste and vegetable oils. Journal of Quality Technology 5 (1):111–21.
  • Yuan, X., Y. Cao, J. Li, A. J. Patel, C. D. Dong, X. Jin, C. Gu, A. C. K. Yip, D. C. W. Tsang, and Y. K. Yong Sik Ok. 2023. Recent advancements and challenges in emerging applications of biochar-based catalysts. Biotechnology Advances 67:108181. doi:10.1016/j.biotechadv.2023.108181.
  • Zhang, R., H. Gao, Y. Wang, B. He, J. Lu, W. Zhu, L. Peng, and Y. Wang. 2023. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. Bioresource Technology 369:128315. doi:10.1016/j.biortech.2022.128315.
  • Živković, S. B., M. V. Veljković, I. B. Banković-Ilić, I. M. Krstić, S. S. Konstantinović, S. B. Ilić, J. M. Avramović, O. S. Stamenković, and V. B. Veljković. 2017. Technological, technical, economic, environmental, social, human health risk, toxicological, and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews 79:222–47. doi:10.1016/j.rser.2017.05.048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.