119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study of Mechanical and Surface Properties of Multi-Walled Carbon Nanotube Grafted Flax Fiber and Its Composites

, , , &

References

  • Anirudh, S., K. A. Prabha, S. B. Murthy, and B. C. Rao. 2023. “Enhancement of Mechanical Properties of Matrix by Functionalized Multi-Wall Carbon Nanotubes (MWCNT) in Composite Material.” Materials Today: Proceedings 92 (2): 1186–18. https://doi.org/10.1016/j.matpr.2023.05.308.
  • Arnould, O., D. Siniscalco, A. Bourmaud, A. L. Duigou, and C. Baley. 2017. “Better Insight into the Nano-Mechanical Properties of Flax Fibre Cell Walls.” Industrial Crops and Products 97:224–228. https://doi.org/10.1016/j.indcrop.2016.12.020.
  • ASTM. 2017. D3039/D3039M-17. 105–116.
  • Bunsell, A. R. 2009. Handbook of Tensile Properties of Textile and Technical Fibres. Cambridge: Elsevier.
  • Carroll, B. J. 1976. “The Accurate Measurement of Contact Angle, Phase Contact Areas, Drop Volume, and Laplace Excess Pressure in Drop-On-Fiber Systems.” Journal of Colloid and Interface Science 57 (3): 488–495. https://doi.org/10.1016/0021-9797(76)90227-7.
  • Charleta, K., S. Evea, J. P. Jernota, M. Gominaa, and J. Breard. 2009. “Tensile Deformation of a Flax Fiber.” Procedia Engineering 1 (1): 233–236. https://doi.org/10.1016/j.proeng.2009.06.055.
  • Chen, Z., K. Du, H. Yin, D. Zhang, J. Gao, W. Song, and S. Zhang. 2023. “Surface Modification of Bamboo Fiber with Dopamine Associated by Laccase for Poly(3-Hydroxylbutyrate) Biocomposites.” Journal of Cleaner Production 389 (20): 135996. https://doi.org/10.1016/j.jclepro.2023.135996.
  • Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. “Chemical Composition and Mechanical Properties of Natural Fibers.” Journal of Natural Fibers 19 (10): 3942–3953. https://doi.org/10.1080/15440478.2020.1848738.
  • Coroller, G., A. Lefeuvre, A. L. Duigou, A. Bourmaud, G. Ausias, T. Gaudry, and C. Baley. 2013. “Effect of Flax Fibres Individualisation on Tensile Failure of Flax/Epoxy Unidirectional Composite.” Composites Part A, Applied Science and Manufacturing 51:62–70. https://doi.org/10.1016/j.compositesa.2013.03.018.
  • Cruz, J., and R. Fangueiro. 2016. “Surface Modification of Natural Fibers: A Review.” Procedia Engineering 155:285–288. https://doi.org/10.1016/j.proeng.2016.08.030.
  • Cui, H., C. Wang, X. Liu, J. Yuan, and Y. Liu. 2023. “Dynamic Simulation of Fluid-Structure Interactions Between Leaves and Airflow During Air-Assisted Spraying: A Case Study of Cotton.” Computers and Electronics in Agriculture 209:107817. https://doi.org/10.1016/j.compag.2023.107817.
  • Fei, B., D. Wang, N. AlMasoud, H. Yang, J. Yang, T. S. Alomar, B. Puangsin d, et al. 2023. “Bamboo Fiber Strengthened Poly(lactic Acid) Composites with Enhanced Interfacial Compatibility Through a Multi-Layered Coating of Synergistic Treatment Strategy.” International Journal of Biological Macromolecules 249 (30): 126018. https://doi.org/10.1016/j.ijbiomac.2023.126018.
  • Guo, R., G. Xian, C. Li, X. Hunag, and M. Xin. 2022. “Effect of Fiber Hybridization Types on the Mechanical Properties of Carbon/Glass Fiber Reinforced Polymer Composite Rod.” Mechanics of Advanced Materials and Structures 29 (27): 6288–6300. https://doi.org/10.1080/15376494.2021.1974620.
  • Harzallah, O., H. Benzina, and J.-Y. Drean. 2010. “Physical and Mechanical Properties of Cotton Fibers: Single-Fiber Failure.” Textile Research Journal 80 (11): 1093–1102. https://doi.org/10.1177/0040517509352525.
  • Kopsidas, S., and G. B. Olowojoba. 2021. “Multifunctional Epoxy Composites Modified with a Graphene Nanoplatelet/Carbon Nanotube Hybrid.” Journal of Applied Polymer Science 138 (35): 50890. https://doi.org/10.1002/app.50890.
  • Li, C., Dong, Y., Yuan, X., Qiu, Z., Zhang, Y., Yan, S., Gao, X., and Zhu, B. “Two-step method to realize continuous multi-wall carbon nanotube grafted on the fibers to improve the interface of carbon fibers/epoxy resin composites based on the Diels-Alder reaction.” Carbon 212: 118131. https://doi.org/10.1016/j.carbon.2023.118131
  • Li, Y., Y. Shang, J. He, M. Li, and M. Yang. 2022. “Low-Loading Oxidized Multi-Walled Carbon Nanotube Grafted Waterborne Polyurethane Composites with Ultrahigh Mechanical Properties Improvement.” Diamond and Related Materials 130:109427. https://doi.org/10.1016/j.diamond.2022.109427.
  • Madsen, B., P. Hoffmeyer, and H. Lilholt. 2007. “Hemp Yarn Reinforced Composites – II. Tensile Properties. Composites Part a.” Composites Part A, Applied Science and Manufacturing 38 (10): 2204–2215. https://doi.org/10.1016/j.compositesa.2007.06.002.
  • Muruganandhan, P., S. Jothilakshmi, R. Vivek, S. Nanthakumar, S. Sakthi, S. Mayakannan, and R. Girimurugan. 2023. “Investigation on Silane Modification and Interfacial UV Aging of Flax Fibre Reinforced with Polystyrene Composite.” Materialstoday Proceedings. https://doi.org/10.1016/j.matpr.2023.03.272.
  • Mustafa, T., and K. Memduh. 2021. “Low-Velocity Impact Response of Pre-Stressed Glass Fiber/Nanotube Filled Epoxy Composite Tubes.” Journal of Composite Materials 55 (7): 915–926. https://doi.org/10.1177/0021998320961552.
  • Orue, A., A. Jauregi, U. Unsuain, J. Labidi, A. Eceiza, and A. Arbelaiz. 2016. “The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(lactic Acid)/Sisal Fiber Composites.” Composites Part A, Applied Science and Manufacturing 84:186–195. https://doi.org/10.1016/j.compositesa.2016.01.021.
  • Placet, V. 2009. “Characterization of the Thermo-Mechanical Behaviour of Hemp Fibres Intended for the Manufacturing of High Performance Composites. Composites Part a.” Composites Part A, Applied Science and Manufacturing 40 (8): 1111–1118. https://doi.org/10.1016/j.compositesa.2009.04.031.
  • Samper Madrigal, M., R. Petrucci, L. Sánchez Nacher, R. Balart Gimeno, and J. Kenny. 2015. “Effect of Silane Coupling Agents on Basalt Fiber-Epoxidized Vegetable Oil Matrix Composite Materials Analyzed by the Single Fiber Fragmentation Technique.” Polymer Composites 36 (7): 1205–1212. https://doi.org/10.1002/pc.23023.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawai, C. Iulian Pruncu, and A. Khan. 2019. “A Comprehensive Review of Techniques for Natural Fibers As Reinforcement in Composites: Preparation, Processing and Characterization.” Carbohydrate Polymers 207:108–201. https://doi.org/10.1016/j.carbpol.2018.11.083.
  • Shadhin, M., M. Rahman, R. Jayaraman, Y. Chen, D. Mann, and W. Zhong. 2023. “Natural Biomass & Waste Biomass Fibers – Structures, Environmental Footprints, Sustainability, Degumming Methods, & Surface Modifications.” Industrial Crops and Products 204 (15): 117252. https://doi.org/10.1016/j.indcrop.2023.117252.
  • Sharma, H., A. Kumar, S. Rana, N. Gopal Sahoo, M. Jamil, R. Kumar, S. Sharma, et al. 2023. “Critical Review on Advancements on the Fiber Reinforced Composites: Role of Fiber/Matrix Modification on the Performance of the Fibrous.” Journal of Materials Research and Technology 26:2975–3002. https://doi.org/10.1016/j.jmrt.2023.08.036.
  • Wang, H., G. Xian, and H. Li. 2015. “Grafting of Nano-TiO2 Onto Flax Fibers and the Enhancement of the Mechanical Properties of the Flax Fiber and Flax Fiber/Epoxy Composite.” Composites Part A, Applied Science and Manufacturing 76:172–180. https://doi.org/10.1016/j.compositesa.2015.05.027.
  • Xian, G., R. Guo, and C. Li. 2022. “Combined Effects of Sustained Bending Loading, Water Immersion and Fiber Hybrid Mode on the Mechanical Properties of Carbon/Glass Fiber Reinforced Polymer Composite.” Composite Structures 281 (1): 115060. https://doi.org/10.1016/j.compstruct.2021.115060.
  • Xu, L., and M. Yang. 2008. “In situ Compatibilization of Polypropylene and Polystyrene-Grafted Nano-Sized TiO2 in the Presence of Friedel–Crafts Catalyst.” Materials Letters 62 (17–18): 2607–2610. https://doi.org/10.1016/j.matlet.2007.12.064.
  • Zhu, L., and K. Goda. 2008. “Strengthening and Stiffening of Ramie Yarns by Applying Cyclic Load Treatment.” Journal of Applied Polymer Science 109 (2): 889–896. https://doi.org/10.1002/app.28146.