1,476
Views
0
CrossRef citations to date
0
Altmetric
Toolbox

Automated quantification of vacuole fusion and lipophagy in Saccharomyces cerevisiae from fluorescence and cryo-soft X-ray microscopy data using deep learning

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 902-922 | Received 06 Mar 2023, Accepted 02 Oct 2023, Published online: 31 Oct 2023

References

  • Cole NB, Murphy DD, Grider T, et al. Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem. 2002;277:6344–6352. doi: 10.1074/jbc.M108414200
  • Fairman G, Ouimet M. Lipophagy pathways in yeast are controlled by their distinct modes of induction. Yeast. 2022;39(8):429–439. doi: 10.1002/yea.3705
  • Kruth HS, Comly ME, Butler JD, et al. Type C Niemann-Pick disease. Abnormal metabolism of low density lipoprotein in homozygous and heterozygous fibroblasts. J Biol Chem. 1986;261(35):16769–16774. doi: 10.1016/S0021-9258(18)66632-3
  • Walkley SU, Suzuki K. Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2004;1685(1–3):48–62. doi: 10.1016/j.bbalip.2004.08.011
  • Wang ML, Motamed M, Infante RE, et al. Identification of surface residues on Niemann-Pick C2 essential for hydrophobic handoff of cholesterol to NPC1 in lysosomes. Cell Metab. 2010;12(2):166–173. doi: 10.1016/j.cmet.2010.05.016
  • Pfeffer SR. NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J Biol Chem. 2019;294(5):1706–1709. doi: 10.1074/jbc.TM118.004165
  • Tsuji T, Fujimoto M, Tatematsu T, et al. Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole. Elife. 2017;6:6. doi: 10.7554/eLife.25960
  • Winkler MBL, Kidmose RT, Szomek M, et al. Structural insight into Eukaryotic sterol transport through Niemann-Pick type C proteins. Cell. 2019;179:485–497. doi: 10.1016/j.cell.2019.08.038
  • Wickner W, Haas A. Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms. Annu Revi Biochem. 2000;69(1):247–275. doi: 10.1146/annurev.biochem.69.1.247
  • Li SC, Kane PM. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta, Mol Cell Res. 2009;1793(4):650–663. doi: 10.1016/j.bbamcr.2008.08.003
  • Seeley ES, Kato M, Margolis N, et al. Genomic analysis of homotypic vacuole fusion. ?Mol Biol Cell. 2002;13(3):782–794. doi: 10.1091/mbc.01-10-0512
  • Zhang Y, Xie Y, Liu W, et al. DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy. 2020;16(4):626–640. doi: 10.1080/15548627.2019.1632622
  • Berger AC, Hanson PK, Wylie Nichols J, et al. A yeast model system for functional analysis of the Niemann-Pick type C protein 1 homolog, Ncr1p. Traffic. 2005;6(10):907–917. doi: 10.1111/j.1600-0854.2005.00327.x
  • Berger AC, Vanderford TH, Gernert KM, et al. Saccharomyces cerevisiae Npc2p is a functionally conserved homologue of the human Niemann-Pick disease type C 2 protein, hNPC2. Eukaryot Cell. 2005;4:1851–1862. doi: 10.1128/EC.4.11.1851-1862.2005
  • Wang L, Seeley ES, Wickner W, et al. Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell. 2002;108(3):357–369. doi: 10.1016/S0092-8674(02)00632-3
  • Michaillat L, Baars TL, Mayer A, et al. Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. ?Mol Biol Cell. 2012;23(5):881–895. doi: 10.1091/mbc.e11-08-0703
  • Hurst LR, Zhang C, Kazmirchuk TDD, et al. Sphingolipids with very long-chain fatty acids regulate vacuole fusion during tethering and docking. bioRxiv, 2020.
  • Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J Cell Bio. 2014;206(3):357–366. doi: 10.1083/jcb.201404115
  • Liao PC, Garcia EJ, Tan G, et al. Roles for L o microdomains and ESCRT in ER stress-induced lipid droplet microautophagy in budding yeast. ?Mol Biol Cell. 2021;32:br12. doi: 10.1091/mbc.E21-04-0179
  • Teixeira V, Johnsen L, Martinez-Montanes F, et al. Regulation of lipid droplets by metabolically controlled ldo isoforms. J Cell Bio. 2018;217(1):127–138. doi: 10.1083/jcb.201704115
  • Adhikari S, Moscatelli J, Puchner EM, et al. Quantitative live-cell PALM reveals nanoscopic Faa4 redistributions and dynamics on lipid droplets during metabolic transitions of yeast. ?Mol Biol Cell. 2021;32(17):1565–1578. doi: 10.1091/mbc.E20-11-0695
  • Puchner EM, Walter JM, Kasper R, et al. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc Natl Acad Sci, USA. 2013;110:16015–16020. doi: 10.1073/pnas.1309676110
  • Severs NJ. Freeze-fracture electron microscopy. Nat Protoc. 2007;2:547–576. doi: 10.1038/nprot.2007.55
  • Sleytr UB, Robards AW. Understanding the artefact problem in freeze-fracture replication: a review. J Microsc. 1982;126(1):101–122. doi: 10.1111/j.1365-2818.1982.tb00361.x
  • Fermie J, Liv N, Ten Brink C, et al. Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy. Traffic. 2018;19(5):354–369. doi: 10.1111/tra.12557
  • McDermott G, Le Gros MA, Knoechel CG, et al. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol. 2009;19(11):587–595. doi: 10.1016/j.tcb.2009.08.005
  • Schneider G, Guttmann P, Heim S, et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat Methods. 2010;7(12):985–987. doi: 10.1038/nmeth.1533
  • Larabell CA, Le Gros MA. X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. ?Mol Biol Cell. 2004;15(3):957–962. doi: 10.1091/mbc.e03-07-0522
  • Uchida M, McDermott G, Wetzler M, et al. Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc Natl Acad Sci, USA. 2009;106(46):19375–19380. doi: 10.1073/pnas.0906145106
  • Uchida M, Sun Y, McDermott G, et al. Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast. 2011;28(3):227–236. doi: 10.1002/yea.1834
  • Duke EM, Razi M, Weston A, et al. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy. 2014;143:77–87. doi: 10.1016/j.ultramic.2013.10.006
  • Schneider G, Guttmann P, Rehbein S, et al. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging. J Struct Biol. 2012;177(2):212–223. doi: 10.1016/j.jsb.2011.12.023
  • Dyhr MCA, Sadeghi M, Moynova R, et al. 3D-surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semi-supervised deep learning. 2022. bioRxiv 2022:2022.05. 16.492055.
  • Li A, Zhang X, Singla J, et al. Auto-segmentation and time-dependent systematic analysis of mesoscale cellular structure in β-cells during insulin secretion. PLoS One. 2022;17:e0265567. doi: 10.1371/journal.pone.0265567
  • Journo D, Winter G, Abeliovich H. Monitoring autophagy in yeast using FM 4-64 fluorescence. Methods Enzymol. 2008;451:79–88.
  • Muller O, Sattler T, Flotenmeyer M, et al. Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Bio. 2000;151(3):519–528. doi: 10.1083/jcb.151.3.519
  • Kunz JB, Schwarz H, Mayer A. Determination of four sequential stages during microautophagy in vitro. J Biol Chem. 2004;279(11):9987–9996. doi: 10.1074/jbc.M307905200
  • Sattler T, Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Bio. 2000;151(3):529–538. doi: 10.1083/jcb.151.3.529
  • Shpilka T, Welter E, Borovsky N, et al. Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J. 2015;34(16):2117–2131. doi: 10.15252/embj.201490315
  • Qiu F, Kang N, Tan J, et al. Fatty acyl Coenzyme a synthetase Fat1p Regulates vacuolar structure and stationary-phase lipophagy in Saccharomyces cerevisiae. Microbiol Spectr. 2023;11(1):e0462522. doi: 10.1128/spectrum.04625-22
  • Krizhevsky A, Sustkever I, Hinton G. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90. doi: 10.1145/3065386
  • Dogo EM, Afolabi OJ, Nwulu NI, et al. A Comparative analysis of Gradient Descent-based Optimization Algorithms on convolutional neural networks. International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS). Belgaum, India: IEEE, 2018:92–99.
  • Kato M, Wickner W. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. EMBO J. 2001;20:4035–4040. doi: 10.1093/emboj/20.15.4035
  • Starr ML, Fratti RA. The Participation of regulatory lipids in vacuole homotypic fusion. Trends Biochem Sci. 2019;44(6):546–554. doi: 10.1016/j.tibs.2018.12.003
  • Vilaca R, Silva E, Nadais A, et al. Sphingolipid signalling mediates mitochondrial dysfunctions and reduced chronological lifespan in the yeast model of Niemann-Pick type C1. Mol Microbiol. 2014;91(3):438–451. doi: 10.1111/mmi.12470
  • Martins TS, Costa RS, Vilaca R, et al. Iron limitation restores autophagy and increases lifespan in the yeast model of Niemann–Pick type C1. Int J Mol Sci. 2023;24:24. doi: 10.3390/ijms24076221
  • Gonzalez A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 2017;36(4):397–408. doi: 10.15252/embj.201696010
  • Powers RW 3rd, Kaeberlein M, Caldwell SD, et al. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006;20(2):174–184. doi: 10.1101/gad.1381406
  • Dikicioglu D, Dereli Eke E, Eraslan S, et al. Saccharomyces cerevisiae adapted to grow in the presence of low-dose rapamycin exhibit altered amino acid metabolism. Cell Commun Signal. 2018;16(1):85. doi: 10.1186/s12964-018-0298-y
  • Castellano BM, Thelen AM, Moldavski O, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355:1306–1311. doi: 10.1126/science.aag1417
  • Davis OB, Shin HR, Lim CY, et al. NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann-Pick type C. Dev Cell. 2021;56(3):260–76 e7. doi: 10.1016/j.devcel.2020.11.016
  • Xu J, Dang Y, Ren YR, et al. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci, USA. 2010;107(10):4764–4769. doi: 10.1073/pnas.0910872107
  • Hung YH, Lotan A, Yeshurun S, et al. Iron chelation by deferiprone does not rescue the Niemann-Pick disease type C1 mouse model. Biometals. 2020;33(2–3):87–95. doi: 10.1007/s10534-020-00233-5
  • Chen OCW, Siebel S, Colaco A, et al. Defective iron homeostasis and hematological abnormalities in Niemann-Pick disease type C1. Wellcome Open Res. 2022;7:267. doi: 10.12688/wellcomeopenres.17261.1
  • Shakoury-Elizeh M, Protchenko O, Berger A, et al. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem. 2010;285(19):14823–14833. doi: 10.1074/jbc.M109.091710
  • Juhl AD, Lund FW, Jensen MLV, et al. Niemann Pick C2 protein enables cholesterol transfer from endo-lysosomes to the plasma membrane for efflux by shedding of extracellular vesicles. Chem Phys Lipids. 2021;235:105047. doi: 10.1016/j.chemphyslip.2020.105047
  • Okolo CA, Kounatidis I, Groen J, et al. Sample preparation strategies for efficient correlation of 3D SIM and soft X-ray tomography data at cryogenic temperatures. Nat Protoc. 2021;16(6):2851–2885. doi: 10.1038/s41596-021-00522-4
  • Simard PY, Steinkraus D, Platt JC. Best practices for convolutional neural networks applied to visual document analysis. 7th international conference on document analysis and recognition; Edinburgh, UK; 2003. p. 958–963. doi: 10.1109/ICDAR.2003.1227801
  • Falk T, Mai D, Bensch R, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods. 2019;16:67–70. doi: 10.1038/s41592-018-0261-2
  • Cicek Ö, Abuldkadir A, Lienkamp SS, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention; Athens, Greece. Springer; 2016:424–432.
  • Zhu W, Huang Y, Zeng L, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 2019;46(2):576–589. doi: 10.1002/mp.13300
  • Milletari F, Navab N, Ahmadi S. V-Net: fully convolutional neural networks for volumetric medical image segmentation. Fourth International Conference on 3D Vision; Stanford, CA, USA; 2016:565–570.
  • Eelbode T, Bertels J, Berman M, et al. Optimization for medical image segmentation: theory and practice when evaluating with dice score and jaccard index. IEEE Trans Med Imaging. 2020;39:3679–3690. doi: 10.1109/TMI.2020.3002417
  • Beucher S, Meyer F. The morphological approach to segmentation: the watershed transformation. Boca Raton, Florida, United States: CRC Press; 1992.
  • Legland D, Arganda-Carreras I, Andrey P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics. 2016;32:3532–3534. doi: 10.1093/bioinformatics/btw413
  • Sullivan C, Kaszynski AP. PyVista: 3D plotting and mesh analysis through a streamlined interface for the visualization toolkit (VTK). J Open Source Software. 2019;4(37):1450. doi: 10.21105/joss.01450
  • Toulmay A, Prinz WA. Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. J Cell Bio. 2013;202(1):35–44. doi: 10.1083/jcb.201301039
  • Seo AY, Sarkleti F, Budin I, et al. Vacuole phase-partitioning boosts mitochondria activity and cell lifespan through an inter-organelle lipid pipeline. bioRxiv 2021.
  • Seo AY, Lau PW, Feliciano D, et al. AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation. Elife. 2017;6:6. doi: 10.7554/eLife.21690
  • Leveille CL, Cornell CE, Merz AJ, et al. Yeast cells actively tune their membranes to phase separate at temperatures that scale with growth temperatures. 2022;119(4):e2116007119. doi: 10.1073/pnas.2116007119
  • Reinhard J, Leveille CL, Cornell CE, et al. Remodeling of yeast vacuole membrane lipidomes from the log (one phase) to stationary stage (two phases). Biophys J. 2023;122(6):1043–1057. doi: 10.1016/j.bpj.2023.01.009
  • Rayermann SP, Rayermann GE, Cornell CE, et al. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. Biophys J. 2017;113(11):2425–2432. doi: 10.1016/j.bpj.2017.09.029
  • Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–1135. doi: 10.1038/nature07976
  • Reis FCG, Borges BS, Jozefowicz LJ, et al. A novel protocol for the isolation of fungal extracellular vesicles reveals the participation of a putative scramblase in polysaccharide export and capsule construction in cryptococcus gattii. mSphere. 2019;4(2):4. doi: 10.1128/mSphere.00080-19
  • Rizzo J, Wong SSW, Gazi AD, et al. Cryptococcus extracellular vesicles properties and their use as vaccine platforms. J Extracell Vesicles. 2021;10(10):e12129. doi: 10.1002/jev2.12129
  • Oliveira DL, Nakayasu ES, Joffe LS, et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One. 2010;5(6):e11113. doi: 10.1371/journal.pone.0011113
  • Leidal AM, Debnath J. Emerging roles for the autophagy machinery in extracellular vesicle biogenesis and secretion. FASEB Bioadv. 2021;3:377–386. doi: 10.1096/fba.2020-00138
  • Ouahoud S, Fiet MD, Martinez-Montanes F, et al. Lipid droplet consumption is functionally coupled to vacuole homeostasis independent of lipophagy. J Cell Sci. 2018;131.
  • Maeda Y, Oku M, Sakai Y. A defect of the vacuolar putative lipase Atg15 accelerates degradation of lipid droplets through lipolysis. Autophagy. 2015;11(8):1247–1258. doi: 10.1080/15548627.2015.1056969
  • Klionsky DJ, Eskelinen EL. The vacuole versus the lysosome: when size matters. Autophagy. 2014;10(2):185–187. doi: 10.4161/auto.27367
  • Schepers J, Behl C. Lipid droplets and autophagy-links and regulations from yeast to humans. J Cell Biochem. 2021;122:602–611. doi: 10.1002/jcb.29889
  • Farmer BC, Walsh AE, Kluemper JC, et al. Lipid droplets in neurodegenerative disorders. Front Neurosci. 2020;14:742. doi: 10.3389/fnins.2020.00742
  • van Zutphen T, Todde V, de Boer R, et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. ?Mol Biol Cell. 2014;25(2):290–301. doi: 10.1091/mbc.e13-08-0448
  • Robichaud S, Fairman G, Vijithakumar V, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;2021:1–19. doi: 10.1016/j.atherosclerosis.2021.06.011
  • Gomez-de-Mariscal E, Garcia-Lopez-de-Haro C, Ouyang W, et al. DeepImageJ: a user-friendly environment to run deep learning models in ImageJ. Nat Methods. 2021;18(10):1192–1195. doi: 10.1038/s41592-021-01262-9
  • Kraus OZ, Grys BT, Ba J, et al. Automated analysis of high-content microscopy data with deep learning. Mol Syst Biol. 2017;13(4):924. doi: 10.15252/msb.20177551
  • Grinberg NF, Orhobor OI, King RD. An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. MACH LEARN. 2020;109(2):251–277. doi: 10.1007/s10994-019-05848-5
  • Yeung CHL, Sahin N, Andrews B. Phenomics approaches to understand genetic networks and gene function in yeast. Biochem Soc Trans. 2022;50(2):713–721. doi: 10.1042/BST20210285
  • Moesgaard L, Petersen D, Szomek M, et al. Mechanistic insight into lipid binding to yeast Niemann Pick type C2 protein. Biochemistry. 2020;59(45):4407–4420. doi: 10.1021/acs.biochem.0c00574
  • Li A, Zhang S, Loconte V, et al. An intensity-based post-processing tool for 3D instance segmentation of organelles in soft X-ray tomograms. PLoS One. 2022;17(9):e0269887. doi: 10.1371/journal.pone.0269887
  • Laval T, Ouimet M. A role for lipophagy in atherosclerosis. Nat Rev Cardiol. 2023;20(7):431–432. doi: 10.1038/s41569-023-00885-z
  • Zammouri J, Vatier C, Capel E, et al. Molecular and cellular bases of lipodystrophy syndromes. Front Endocrinol. 2021;12:803189. doi: 10.3389/fendo.2021.803189
  • Ralhan I, Chang CL, Lippincott-Schwartz J, et al. Lipid droplets in the nervous system. J Cell Bio. 2021;220(7):220. doi: 10.1083/jcb.202102136
  • Filali-Mouncef Y, Hunter C, Roccio F, et al. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy. 2022;18:50–72. doi: 10.1080/15548627.2021.1895658
  • Juhl AD, Heegaard CW, Werner S, et al. Quantitative imaging of membrane contact sites for sterol transfer between endo-lysosomes and mitochondria in living cells. Sci Rep. 2021;11(1):8927. doi: 10.1038/s41598-021-87876-7
  • Loconte V, Singla J, Li A, et al. Soft X-ray tomography to map and quantify organelle interactions at the mesoscale. Structure. 2022;30:510–21 e3. doi: 10.1016/j.str.2022.01.006
  • Zou Z, Tong F, Faergeman NJ, et al. Vectorial acylation in Saccharomyces cerevisiae. Fat1p and fatty acyl-CoA synthetase are interacting components of a fatty acid import complex. J Biol Chem. 2003;278(18):16414–16422. doi: 10.1074/jbc.M210557200
  • Davies JP, Chen FW, Ioannou YA. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science. 2000;290(5500):2295–2298. doi: 10.1126/science.290.5500.2295
  • Wüstner D, Mondal M, Tabas I, et al. Direct observation of rapid internalization and intracellular transport of sterol by macrophage foam cells. Traffic. 2005;6(5):396–412. doi: 10.1111/j.1600-0854.2005.00285.x
  • Heymann JB, Belnap DM. Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol. 2007;157(1):3–18. doi: 10.1016/j.jsb.2006.06.006
  • Fahy K, Weinhardt V, Vihinen-Ranta M, et al. Compact cell imaging device (CoCID) provides insights into the cellular origins of viral infections. J Phys-Photonics. 2021;3(3):3. doi: 10.1088/2515-7647/abfc5a
  • Han RM, Zhang F, Wan XH, et al. A marker-free automatic alignment method based on scale-invariant features. J Struct Biol. 2014;186(1):167–180. doi: 10.1016/j.jsb.2014.02.011
  • Castano-Diez D, Al-Amoudi A, Glynn AM, et al. Fiducial-less alignment of cryo-sections. J Struct Biol. 2007;159(3):413–423. doi: 10.1016/j.jsb.2007.04.014
  • Agulleiro JI, Fernandez JJ. Tomo3D 2.0–exploitation of advanced vector extensions (AVX) for 3D reconstruction. J Struct Biol. 2015;189(2):147–152. doi: 10.1016/j.jsb.2014.11.009
  • Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 1986;PAMI-8(6):679–698. doi: 10.1109/TPAMI.1986.4767851
  • Bunk D, Moriasy J, Thoma F, et al. YeastMate: neural network-assisted segmentation of mating and budding events in Saccharomyces cerevisiae. Bioinformatics. 2022;38(9):2667–2669. doi: 10.1093/bioinformatics/btac107
  • Doncic A, Eser U, Atay O, et al. An algorithm to automate yeast segmentation and tracking. PLoS One. 2013;8(3):e57970. doi: 10.1371/journal.pone.0057970
  • Bakker E, Swain PS, Crane MM, et al. Morphologically constrained and data informed cell segmentation of budding yeast. Bioinformatics. 2018;34(1):88–96. doi: 10.1093/bioinformatics/btx550
  • Dietler N, Minder M, Gligorovski V, et al. A convolutional neural network segments yeast microscopy images with high accuracy. Nat Commun. 2020;11(1):5723. doi: 10.1038/s41467-020-19557-4
  • Stringer C, Wang T, Michaelos M, et al. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18(1):100–106. doi: 10.1038/s41592-020-01018-x
  • Stirling DR, Carpenter AE, Cimini BA, et al. CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis. Bioinformatics. 2021;37(21):3992–3994. doi: 10.1093/bioinformatics/btab634
  • Ma J, Chen J, Ng M, et al. Loss odyssey in medical image segmentation. Med Image Anal. 2021;71:102035. doi: 10.1016/j.media.2021.102035
  • Jadon S A survey of loss functions for semantic segmentation. 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). Via del Mar, Chile, 2020:1–7.
  • Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–272. doi: 10.1038/s41592-019-0686-2
  • Barber CB, Dobkin DP, Huhdanpaa H. The quickhull algorithm for convex hulls. ACM Trans Math Softw. 1996;22(4):469–483. doi: 10.1145/235815.235821