2,584
Views
1
CrossRef citations to date
0
Altmetric
Resource

ATG9 resides on a unique population of small vesicles in presynaptic nerve terminals

, , , , , , , & ORCID Icon show all
Pages 883-901 | Received 01 Feb 2023, Accepted 17 Oct 2023, Published online: 08 Nov 2023

References

  • Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27(1):509–547. doi: 10.1146/annurev.neuro.26.041002.131412
  • Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature. 2012;490(7419):201–207. doi: 10.1038/nature11320
  • Brunger AT, Choi UB, Lai Y, et al. The pre-synaptic fusion machinery. Curr Opin Struct Biol. 2019;54:179–188. doi: 10.1016/j.sbi.2019.03.007
  • Alvarez-Castelao B, Schuman EM. The regulation of synaptic protein turnover. J Biol Chem. 2015;290(48):28623–28630. doi: 10.1074/jbc.R115.657130
  • Truckenbrodt S, Viplav A, Jähne S, et al. Newly produced synaptic vesicle proteins are preferentially used in synaptic transmission. EMBO J. 2018;37(15):37(15. doi: 10.15252/embj.201798044
  • Jahne S, Mikulasch F, Heuer HGH, et al. Presynaptic activity and protein turnover are correlated at the single-synapse level. Cell Rep. 2021;34(11):108841. doi: 10.1016/j.celrep.2021.108841
  • Gundelfinger ED, Karpova A, Pielot R, et al. Organization of presynaptic autophagy-related processes. Front Synaptic Neurosci. 2022;14:829354. doi: 10.3389/fnsyn.2022.829354
  • Soykan T, Haucke V, Kuijpers M. Mechanism of synaptic protein turnover and its regulation by neuronal activity. Curr Opin Neurobiol. 2021;69:76–83. doi: 10.1016/j.conb.2021.02.006
  • Kulkarni VV, Stempel MH, Anand A, et al. Retrograde axonal autophagy and endocytic pathways are parallel and separate in neurons. J Neurosci. 2022;42(45):8524–8541. doi: 10.1523/JNEUROSCI.1292-22.2022
  • Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Nat Rev Mol Cell Biol. 2020;21(1):25–42. doi: 10.1038/s41580-019-0177-4
  • Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol. 2011;93(3):313–340. doi: 10.1016/j.pneurobio.2011.01.003
  • Mercer TJ, Gubas A, Tooze SA. A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem. 2018;293(15):5386–5395. doi: 10.1074/jbc.R117.810366
  • Stavoe AKH, Holzbaur ELF. Autophagy in neurons. Annu Rev Cell Dev Biol. 2019;35:477–500. doi: 10.1146/annurev-cellbio-100818-125242
  • Binotti B, Pavlos NJ, Riedel D, et al. The GTPase Rab26 links synaptic vesicles to the autophagy pathway. Elife. 2015;4:e05597. doi: 10.7554/eLife.05597
  • Dong W, He B, Qian H, et al. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy. 2018;14(10):1677–1692. doi: 10.1080/15548627.2018.1476811
  • Luningschror P, Binotti B, Dombert B, et al. Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun. 2017;8(1):678. doi: 10.1038/s41467-017-00689-z
  • Barz S, Kriegenburg F, Sánchez-Martín P, et al. Small but mighty: Atg8s and rabs in membrane dynamics during autophagy. Biochim Biophys Acta, Mol Cell Res. 2021;1868(9):119064. doi: 10.1016/j.bbamcr.2021.119064
  • Nishimura T, Tooze SA. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov. 2020;6(1):32. doi: 10.1038/s41421-020-0161-3
  • Grasso D, Renna FJ, Vaccaro MI. Initial steps in mammalian autophagosome biogenesis. Front Cell Dev Biol. 2018;6:146. doi: 10.3389/fcell.2018.00146
  • Matoba K, Kotani T, Tsutsumi A, et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol. 2020;27(12):1185–1193. doi: 10.1038/s41594-020-00518-w
  • Maeda S, Yamamoto H, Kinch LN, et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol. 2020;27(12):1194–1201. doi: 10.1038/s41594-020-00520-2
  • Guardia CM, Tan X-F, Lian T, et al. Structure of human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 2020;31(13):107837. doi: 10.1016/j.celrep.2020.107837
  • Osawa T, Kotani T, Kawaoka T, et al. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat Struct Mol Biol. 2019;26(4):281–288. doi: 10.1038/s41594-019-0203-4
  • Tang Z, Takahashi Y, He H, et al. TOM40 targets Atg2 to mitochondria-associated ER membranes for phagophore expansion. Cell Rep. 2019;28(7):1744–1757 e5. doi: 10.1016/j.celrep.2019.07.036
  • Orsi A, Razi M, Dooley HC, et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell. 2012;23(10):1860–1873. doi: 10.1091/mbc.e11-09-0746
  • Karanasios E, Walker SA, Okkenhaug H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun. 2016;7(1):12420. doi: 10.1038/ncomms12420
  • Gomez-Sanchez R, Tooze SA, Reggiori F. Membrane supply and remodeling during autophagosome biogenesis. Curr Opin Cell Biol. 2021;71:112–119. doi: 10.1016/j.ceb.2021.02.001
  • Yang S, Park D, Manning L, et al. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron. 2022;110(5):824–840 e10. doi: 10.1016/j.neuron.2021.12.031
  • Stavoe AK, Hill S, Hall D, et al. KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Dev Cell. 2016;38(2):171–185. doi: 10.1016/j.devcel.2016.06.012
  • Maday S, Holzbaur EL. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev Cell. 2014;30(1):71–85. doi: 10.1016/j.devcel.2014.06.001
  • Boyken J, Grønborg M, Riedel D, et al. Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron. 2013;78(2):285–297. doi: 10.1016/j.neuron.2013.02.027
  • Takamori S, Holt M, Stenius K, et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127(4):831–846. doi: 10.1016/j.cell.2006.10.030
  • Huttner WB, Schiebler W, Greengard P, et al. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Bio. 1983;96(5):1374–1388. doi: 10.1083/jcb.96.5.1374
  • Fischer von Mollard G, Stahl B, Walch-Solimena C, et al. Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway. Eur J Cell Biol. 1994;65(2):319–326.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–525. doi: 10.1038/nrm2728
  • Taoufiq Z, Ninov M, Villar-Briones A, et al. Hidden proteome of synaptic vesicles in the mammalian brain. Proc Natl Acad Sci U S A. 2020;117(52):33586–33596. doi: 10.1073/pnas.2011870117
  • Morgenstern M, Peikert CD, Lübbert P, et al. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab. 2021;33(12):2464–2483 e18. doi: 10.1016/j.cmet.2021.11.001
  • Eapen VV, Swarup S, Hoyer MJ, et al. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. Elife. 2021;10:10. doi: 10.7554/eLife.72328
  • Geladaki A, Kočevar Britovšek N, Breckels LM, et al. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat Commun. 2019;10(1):331. doi: 10.1038/s41467-018-08191-w
  • Shin JJH, Crook OM, Borgeaud AC, et al. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat Commun. 2020;11(1):5987. doi: 10.1038/s41467-020-19840-4
  • Jin RU, Mills JC. RAB26 coordinates lysosome traffic and mitochondrial localization. J Cell Sci. 2014;127(Pt 5):1018–1032. doi: 10.1242/jcs.138776
  • Riederer MA, Soldati T, Shapiro AD, et al. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Bio. 1994;125(3):573–582. doi: 10.1083/jcb.125.3.573
  • Kucera A, Borg Distefano M, Berg‐Larsen A, et al. Spatiotemporal resolution of Rab9 and CI-MPR dynamics in the endocytic pathway. Traffic. 2016;17(3):211–229. doi: 10.1111/tra.12357
  • Evans TM, Ferguson C, Wainwright, BJ, et al. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic. 2003;4(12):869–884. doi: 10.1046/j.1600-0854.2003.00141.x
  • Pavlos NJ, Grønborg M, Riedel D, et al. Quantitative analysis of synaptic vesicle rabs uncovers distinct yet overlapping roles for Rab3a and Rab27b in ca 2+ -triggered exocytosis. J Neurosci. 2010;30(40):13441–13453. doi: 10.1523/JNEUROSCI.0907-10.2010
  • Popova NV, Deyev IE, Petrenko AG. Clathrin-mediated endocytosis and adaptor proteins. Acta Naturae. 2013;5(3):62–73. doi: 10.32607/20758251-2013-5-3-62-73
  • Milosevic I. Revisiting the role of clathrin-mediated Endoytosis in synaptic vesicle recycling. Front Cell Neurosci. 2018;12:27. doi: 10.3389/fncel.2018.00027
  • Schroeter S, Beckmann S, Schmitt HD. Coat/Tether interactions-exception or rule? Front Cell Dev Biol. 2016;4:44. doi: 10.3389/fcell.2016.00044
  • Aridor M. A tango for coats and membranes: new insights into ER-to-Golgi traffic. Cell Rep. 2022;38(3):110258. doi: 10.1016/j.celrep.2021.110258
  • Schellmann S, Pimpl P. Coats of endosomal protein sorting: retromer and ESCRT. Curr Opin Plant Biol. 2009;12(6):670–676. doi: 10.1016/j.pbi.2009.09.005
  • Solinger JA, Spang A. Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J. 2013;280(12):2743–2757. doi: 10.1111/febs.12151
  • Balderhaar HJ, Ungermann C. CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci. 2013;126(Pt 6):1307–1316. doi: 10.1242/jcs.107805
  • Kim JJ, Lipatova Z, Segev N. TRAPP complexes in secretion and autophagy. Front Cell Dev Biol. 2016;4:20. doi: 10.3389/fcell.2016.00020
  • Sacher M, Shahrzad N, Kamel H, et al. Trappopathies: an emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic. 2019;20(1):5–26. doi: 10.1111/tra.12615
  • Ballabio A, Bonifacino JS. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat Rev Mol Cell Biol. 2020;21(2):101–118. doi: 10.1038/s41580-019-0185-4
  • Song Q, Meng B, Xu H, et al. The emerging roles of vacuolar-type ATPase-dependent lysosomal acidification in neurodegenerative diseases. Transl Neurodegener. 2020;9(1):17. doi: 10.1186/s40035-020-00196-0
  • Upmanyu N, Jin J, Emde HVD, et al. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron. 2022;110(9):1483–1497 e7. doi: 10.1016/j.neuron.2022.02.008
  • Heine J, Reuss M, Harke B, et al. Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci U S A. 2017;114(37):9797–9802. doi: 10.1073/pnas.1708304114
  • Balzarotti F, Eilers Y, Gwosch KC, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science. 2017;355(6325):606–612. doi: 10.1126/science.aak9913
  • Gwosch KC, Pape JK, Balzarotti F, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods. 2020;17(2):217–224. doi: 10.1038/s41592-019-0688-0
  • Jungmann R, Avendaño MS, Woehrstein JB, et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods. 2014;11(3):313–318. doi: 10.1038/nmeth.2835
  • Ostersehlt LM, Jans DC, Wittek A, et al. DNA-PAINT MINFLUX nanoscopy. Nat Methods. 2022;19(9):1072–1075. doi: 10.1038/s41592-022-01577-1
  • Noda T, Kim J, Huang W-P, et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the cvt and autophagy pathways. J Cell Bio. 2000;148(3):465–480. doi: 10.1083/jcb.148.3.465
  • Webber JL, Tooze SA. New insights into the function of Atg9. FEBS Lett. 2010;584(7):1319–1326. doi: 10.1016/j.febslet.2010.01.020
  • De Tito S, Hervás JH, van Vliet AR, et al. The Golgi as an assembly line to the autophagosome. Trends Biochem Sci. 2020;45(6):484–496. doi: 10.1016/j.tibs.2020.03.010
  • Mattera R, Park SY, De Pace R, et al. AP-4 mediates export of ATG9A from the trans-Golgi network to promote autophagosome formation. Proc Natl Acad Sci U S A. 2017;114(50):E10697–E10706. doi: 10.1073/pnas.1717327114
  • Davies AK, Itzhak DN, Edgar JR, et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun. 2018;9(1):3958. doi: 10.1038/s41467-018-06172-7
  • Judith D, Jefferies HBJ, Boeing S, et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Bio. 2019;218(5):1634–1652. doi: 10.1083/jcb.201901115
  • Kannangara AR, Poole DM, McEwan CM, et al. BioID reveals an ATG9A interaction with ATG13-ATG101 in the degradation of p62/SQSTM1-ubiquitin clusters. EMBO Rep. 2021;22(10):e51136. doi: 10.15252/embr.202051136
  • De Pace R, Skirzewski M, Damme M, et al. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet. 2018;14(4):e1007363. doi: 10.1371/journal.pgen.1007363
  • Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Bio. 2012;196(4):407–417. doi: 10.1083/jcb.201106120
  • Hill SE, Colon-Ramos DA. The journey of the synaptic autophagosome: a Cell biological perspective. Neuron. 2020;105(6):961–973. doi: 10.1016/j.neuron.2020.01.018
  • Valencia M, Kim SR, Jang Y, et al. Neuronal autophagy: characteristic features and roles in neuronal pathophysiology. Biomol Ther. 2021;29(6):605–614. doi: 10.4062/biomolther.2021.012
  • Ariosa AR, Klionsky DJ. Autophagy core machinery: overcoming spatial barriers in neurons. J Mol Med (Berl). 2016;94(11):1217–1227. doi: 10.1007/s00109-016-1461-9
  • Maday S, Holzbaur EL. Compartment-specific Regulation of autophagy in primary neurons. J Neurosci. 2016;36(22):5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016
  • Wilhelm BG, Mandad S, Truckenbrodt S, et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science. 2014;344(6187):1023–1028. doi: 10.1126/science.1252884
  • Rizzoli SO. Synaptic vesicle recycling: steps and principles. EMBO J. 2014;33(8):788–822. doi: 10.1002/embj.201386357
  • Anne C, Gasnier B. Vesicular neurotransmitter transporters: mechanistic aspects. Curr Top Membr. 2014;73:149–174.
  • Granseth B, Odermatt B, Royle S, et al. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron. 2006;51(6):773–786. doi: 10.1016/j.neuron.2006.08.029
  • Watanabe S, Rost BR, Camacho-Pérez M, et al. Ultrafast endocytosis at mouse hippocampal synapses. Nature. 2013;504(7479):242–247. doi: 10.1038/nature12809
  • Saheki Y, De Camilli P. Synaptic vesicle endocytosis. Cold Spring Harb Perspect Biol. 2012;4(9):a005645. doi: 10.1101/cshperspect.a005645
  • Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol. 2018;78(3):283–297. doi: 10.1002/dneu.22534
  • Maas C, Torres VI, Altrock WD, et al. Formation of Golgi-derived active zone precursor vesicles. J Neurosci. 2012;32(32):11095–11108. doi: 10.1523/JNEUROSCI.0195-12.2012
  • Hua Z, Leal-Ortiz S, Foss S, et al. V-SNARE composition distinguishes synaptic vesicle pools. Neuron. 2011;71(3):474–487. doi: 10.1016/j.neuron.2011.06.010
  • Rizzoli SO, Betz WJ. Synaptic vesicle pools. Nat Rev Neurosci. 2005;6(1):57–69. doi: 10.1038/nrn1583
  • Olivas TJ, Wu Y, Yu S, et al. ATG9 vesicles comprise the seed membrane of mammalian autophagosomes. J Cell Bio. 2023;222(7):222(7. doi: 10.1083/jcb.202208088
  • Park D, Wu Y, Wang X, et al. Synaptic vesicle proteins and ATG9A self-organize in distinct vesicle phases within synapsin condensates. Nat Commun. 2023;14(1):455. doi: 10.1038/s41467-023-36081-3
  • Schmidt R, Weihs T, Wurm CA, et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun. 2021;12(1):1478. doi: 10.1038/s41467-021-21652-z
  • Pape JK, Stephan T, Balzarotti F, et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci U S A. 2020;117(34):20607–20614. doi: 10.1073/pnas.2009364117
  • Malkusch S, Endesfelder U, Mondry J, et al. Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem Cell Biol. 2012;137(1):1–10. doi: 10.1007/s00418-011-0880-5
  • Ovesny M, Křížek P, Borkovec J, et al. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30(16):2389–2390. doi: 10.1093/bioinformatics/btu202
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi: 10.1038/nbt.1511
  • Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–2319. doi: 10.1038/nprot.2016.136
  • Cox J, Neuhauser N, Michalski A, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10(4):1794–1805. doi: 10.1021/pr101065j
  • Schwanhausser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342. doi: 10.1038/nature10098
  • Tyanova S, Temu T, Sinitcyn P, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–740. doi: 10.1038/nmeth.3901
  • Ginestet C. ggplot2: elegant graphics for data analysis. J R Stat Soc Ser A Stat Soc J R STAT SOC A STAT. 2011;174:245–245. doi: 10.1111/j.1467-985X.2010.00676_9.x
  • Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543–D552. doi: 10.1093/nar/gkab1038