1,108
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Autophagy captures the retromer-TBC1D5 complex to inhibit receptor recycling

ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 863-882 | Received 10 Aug 2022, Accepted 03 Nov 2023, Published online: 17 Nov 2023

References

  • Carosi JM, Denton D, Kumar S, et al. Receptor recycling by Retromer. Mol Cell Biol. 2023;43(7):317–334. doi: 10.1080/10985549.2023.2222053
  • Seaman MN. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol. 2004;165(1):111–122. doi: 10.1083/jcb.200312034
  • Seaman MN, Marcusson EG, Cereghino JL, et al. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol. 1997;137(1):79–92. doi: 10.1083/jcb.137.1.79
  • Harbour ME, Breusegem SYA, Antrobus R, et al. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci. 2010;123(21):3703–3717. doi: 10.1242/jcs.071472
  • Hesketh GG, Pérez-Dorado I, Jackson L, et al. VARP is recruited on to endosomes by direct interaction with retromer, where together they function in export to the cell surface. Dev Cell. 2014;29(5):591–606. doi: 10.1016/j.devcel.2014.04.010
  • Temkin P, Lauffer B, Jäger S, et al. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol. 2011;13(6):715–721. doi: 10.1038/ncb2252
  • Carlton J, Bujny M, Peter BJ, et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol. 2004;14(20):1791–1800. doi: 10.1016/j.cub.2004.09.077
  • Rojas R, Kametaka S, Haft CR, et al. Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol. 2007;27(3):1112–1124. doi: 10.1128/MCB.00156-06
  • Wassmer T, Attar N, Bujny MV, et al. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci. 2007;120(1):45–54. doi: 10.1242/jcs.03302
  • Harterink M, Port F, Lorenowicz MJ, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the wnt sorting receptor wntless and is required for wnt secretion. Nat Cell Biol. 2011;13(8):914–923. doi: 10.1038/ncb2281
  • Steinberg F, Gallon M, Winfield M, et al. A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol. 2013;15(5):461–471. doi: 10.1038/ncb2721
  • Harrison MS, Hung C-S, Liu T-T, et al. A mechanism for retromer endosomal coat complex assembly with cargo. Proc Natl Acad Sci U S A. 2014;111(1):267–272. doi: 10.1073/pnas.1316482111
  • Seaman MN, Harbour ME, Tattersall D, et al. Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the rab-GAP TBC1D5. J Cell Sci. 2009;122(Pt 14):2371–2382. doi: 10.1242/jcs.048686
  • Rojas R, van Vlijmen T, Mardones GA, et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol. 2008;183(3):513–526. doi: 10.1083/jcb.200804048
  • Seaman MN. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci. 2007;120(Pt 14):2378–2389. doi: 10.1242/jcs.009654
  • Lucas M, Gershlick DC, Vidaurrazaga A, et al. Structural mechanism for cargo Recognition by the retromer complex. Cell. 2016;167(6):1623–1635. doi: 10.1016/j.cell.2016.10.056
  • Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17(5):699–711. doi: 10.1016/j.devcel.2009.09.009
  • Wassmer T, Attar N, Harterink M, et al. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell. 2009;17(1):110–122. doi: 10.1016/j.devcel.2009.04.016
  • Cui Y, Carosi JM, Yang Z, et al. Retromer has a selective function in cargo sorting via endosome transport carriers. J Cell Biol. 2019;218(2):615–631. doi: 10.1083/jcb.201806153
  • Jia D, Zhang J-S, Li F, et al. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun. 2016;7(1):1–11. doi: 10.1038/ncomms13305
  • Borg Distefano M, Hofstad Haugen L, Wang Y, et al. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci. 2018;131(17). doi: 10.1242/jcs.216630
  • Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461–472. doi: 10.1038/nrm4024
  • Kim J, Kundu M, Viollet B, et al. AMPK and MTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141. doi: 10.1038/ncb2152
  • Carosi JM, Fourrier C, Bensalem J, et al. The mTOR–lysosome axis at the centre of ageing. FEBS Open Bio. 2022;12(4):739–757. doi: 10.1002/2211-5463.13347
  • Ganley IG, Lam DH, Wang J, et al. ULK1·ATG13·FIP200 complex mediates mTOR Signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–12305. doi: 10.1074/jbc.M900573200
  • Bensalem J, Hattersley, KJ, Hein, LK, et al. Measurement of autophagic flux in humans: an optimized method for blood samples. Autophagy. 2020;16(1):1–18. doi: 10.1080/15548627.2019.1665293
  • Kvainickas A, Nägele H, Qi W, et al. Retromer and TBC1D5 maintain late endosomal RAB7 domains to enable amino acid–induced mTORC1 signaling. J Cell Biol. 2019;218(9):3019–3038. doi: 10.1083/jcb.201812110
  • Zavodszky E, Seaman MNJ, Moreau K, et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5(1):1–16. doi: 10.1038/ncomms4828
  • Jimenez-Orgaz A, Kvainickas A, Nägele H, et al. Control of RAB7 activity and localization through the retromer-TBC1D5 complex enables RAB7-dependent mitophagy. EMBO J. 2018;37(2):235–254. doi: 10.15252/embj.201797128
  • Carosi JM, Hein LK, van den Hurk M, et al. Retromer regulates the lysosomal clearance of MAPT/tau. Autophagy. 2020;16(1):1–21. doi: 10.1080/15548627.2019.1665293
  • Carosi JM, Denton D, Kumar S, et al. Retromer dysfunction at the nexus of tauopathies. Cell Death Differ. 2021;28(3):884–899. doi: 10.1038/s41418-020-00727-2
  • Arighi CN, Hartnell LM, Aguilar RC, et al. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol. 2004;165(1):123–133. doi: 10.1083/jcb.200312055
  • Carosi JM, Hattersley KJ, Cui Y, et al. Subcellular fractionation of hela cells for lysosome enrichment using a continuous percoll-density gradient. Bio-protocol. 2019;9(18):e3362. doi: 10.21769/BioProtoc.3362
  • Kirkin V, Rogov VV. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol Cell. 2019;76(2):268–285. doi: 10.1016/j.molcel.2019.09.005
  • Popovic D, Akutsu M, Novak I, et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Biol Cell. 2012;32(9):1733–1744. doi: 10.1128/MCB.06717-11
  • Mao L, Liao C, Qin J, et al. Phosphorylation of SNX27 by MAPK11/14 links cellular stress–signaling pathways with endocytic recycling. J Cell Biol. 2021;220(4). doi: 10.1083/jcb.202010048
  • Roy S, Leidal AM, Ye J, et al. Autophagy-dependent shuttling of TBC1D5 controls plasma membrane translocation of GLUT1 and glucose uptake. Mol Cell. 2017;67(1):84–95 e5. doi: 10.1016/j.molcel.2017.05.020
  • Roy S, Debnath J. Autophagy enables retromer-dependent plasma membrane translocation of SLC2A1/GLUT1 to enhance glucose uptake. Autophagy. 2017;13(11):2013–2014. doi: 10.1080/15548627.2017.1371397
  • Popovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep. 2014;15(4):392–401. doi: 10.1002/embr.201337995
  • Burnett PE, Barrow RK, Cohen NA, et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A. 1998;95(4):1432–1437. doi: 10.1073/pnas.95.4.1432
  • Kang SA, Pacold ME, Cervantes CL, et al. MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science. 2013;341(6144):1236566. doi: 10.1126/science.1236566
  • Huang S, Yang ZJ, Yu C, et al. Inhibition of MTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and down-regulation of p62/sequestosome 1. J Biol Chem. 2011;286(46):40002–40012. doi: 10.1074/jbc.M111.297432
  • Willems L, Chapuis N, Puissant A, et al. The dual MTORC1 and MTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 2012;26(6):1195–1202. doi: 10.1038/leu.2011.339
  • Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–461. doi: 10.1126/science.1196371
  • Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-MTOR complex. Science. 2005;307(5712):1098–1101. doi: 10.1126/science.1106148
  • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits MTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–168. doi: 10.1016/j.molcel.2006.03.029
  • Orozco JM, Krawczyk PA, Scaria SM, et al. Dihydroxyacetone phosphate signals glucose availability to MTORC1. Nat Metab. 2020;2(9):893–901. doi: 10.1038/s42255-020-0250-5
  • Hein LK, Apaja PM, Hattersley K, et al. A novel fluorescent probe reveals starvation controls the commitment of amyloid precursor protein to the lysosome. Biochim Biophys Acta, Mol Cell Res. 2017;1864(10):1554–1565. doi: 10.1016/j.bbamcr.2017.06.011
  • Xie J, De Poi SP, Humphrey SJ, et al. TSC-insensitive rheb mutations induce oncogenic transformation through a combination of constitutively active MTORC1 signalling and proteome remodelling. Cell Mol Life Sci. 2021;78(8):4035–4052. doi: 10.1007/s00018-021-03825-7
  • Wang Y, Hong X, Wang J, et al. Inhibition of MAPK pathway is essential for suppressing rheb-Y35N driven tumor growth. Oncogene. 2017;36(6):756–765. doi: 10.1038/onc.2016.246
  • Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282(52):37298–37302. doi: 10.1074/jbc.C700195200
  • Nguyen TN, Lazarou M. A unifying model for the role of the ATG8 system in autophagy. J Cell Sci. 2022;135(11):135(11. doi: 10.1242/jcs.258997
  • Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy. 2007;3(5):452–460. doi: 10.4161/auto.4451
  • McEwan DG, Popovic D, Gubas A, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015;57(1):39–54. doi: 10.1016/j.molcel.2014.11.006
  • Zellner S, Schifferer M, Behrends C. Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol Cell. 2021;81(6):1337–1354.e8. doi: 10.1016/j.molcel.2021.01.009
  • McNally KE, Faulkner R, Steinberg F, et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol. 2017;19(10):1214–1225. doi: 10.1038/ncb3610
  • Jacomin AC, Samavedam S, Promponas V, et al. iLIR database: a web resource for LIR motif-containing proteins in eukaryotes. Autophagy. 2016;12(10):1945–1953. doi: 10.1080/15548627.2016.1207016
  • Fjorback AW, Seaman M, Gustafsen C, et al. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci. 2012;32(4):1467–1480. doi: 10.1523/JNEUROSCI.2272-11.2012
  • Bhalla A, Vetanovetz CP, Morel E, et al. The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol Dis. 2012;47(1):126–134. doi: 10.1016/j.nbd.2012.03.030
  • Curnock R, Calcagni A, Ballabio A, et al. TFEB controls retromer expression in response to nutrient availability. J Cell Biol. 2019;218(12):3954–3966. doi: 10.1083/jcb.201903006
  • Shi M, Chen B, Mahajan D, et al. Amino acids stimulate the endosome-to-Golgi trafficking through ragulator and small GTPase Arl5. Nat Commun. 2018;9(1):4987. doi: 10.1038/s41467-018-07444-y
  • Xie MW, Jin F, Hwang H, et al. Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A. 2005;102(20):7215–7220. doi: 10.1073/pnas.0500297102
  • Müller M, Schmidt O, Angelova M, et al. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. Elife. 2015;4:e07736. doi: 10.7554/eLife.07736
  • Yin P, Hong Z, Zhang L, et al. Retromer localizes to autophagosomes during HCV replication. Virol Sin. 2017;32(3):245–248. doi: 10.1007/s12250-016-3914-2
  • Dengjel J, Høyer-Hansen M, Nielsen MO, et al. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol Cell Proteomics. 2012;11(3):M111.014035. doi: 10.1074/mcp.M111.014035
  • Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–109. doi: 10.1038/nature13148
  • Muscolino E, Schmitz R, Loroch S, et al. Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism. Nat Microbiol. 2020;5(2):331–342. doi: 10.1038/s41564-019-0624-1
  • Zhou C, Wu Z, Du W, et al. Recycling of autophagosomal components from autolysosomes by the recycler complex. Nat Cell Biol. 2022;24(4):497–512. doi: 10.1038/s41556-022-00861-8
  • Seaman MNJ, Mukadam AS, Breusegem SY. Inhibition of TBC1D5 activates Rab7a and can enhance the function of the retromer cargo-selective complex. J Cell Sci. 2018;131(12). doi: 10.1242/jcs.217398
  • Huttlin EL, Bruckner RJ, Navarrete-Perea J, et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184(11):3022–3040.e28. doi: 10.1016/j.cell.2021.04.011
  • du Toit A, Hofmeyr J-HS, Gniadek TJ, et al. Measuring autophagosome flux. Autophagy. 2018;14(6):1060–1071. doi: 10.1080/15548627.2018.1469590
  • Crawley-Snowdon H, Yang J-C, Zaccai NR, et al. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nat Commun. 2020;11(1):5031. doi: 10.1038/s41467-020-18773-2
  • Hassiotis S, Manavis J, Blumbergs PC, et al. Lysosomal LAMP1 immunoreactivity exists in both diffuse and neuritic amyloid plaques in the human hippocampus. Eur J Neurosci. 2018;47(9):1043–1053. doi: 10.1111/ejn.13913
  • Tang Y, Hu LA, Miller WE, et al. Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the β1-adrenergic receptor. Proc Natl Acad Sci USA. 1999;96(22):12559–12564. doi: 10.1073/pnas.96.22.12559
  • Rowland AA, Chitwood PJ, Phillips MJ, et al. ER contact sites define the position and timing of endosome fission. Cell. 2014;159(5):1027–1041. doi: 10.1016/j.cell.2014.10.023
  • Hazelbaker DZ, Beccard A, Bara AM, et al. A scaled framework for CRISPR editing of human pluripotent stem cells to study psychiatric disease. Stem Cell Rep. 2017;9(4):1315–1327. doi: 10.1016/j.stemcr.2017.09.006
  • Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–784. doi: 10.1038/nmeth.3047
  • Stewart SA, Dykxhoorn DM, Palliser D, et al. C. RNA. 2003;9(4):493–501. doi: 10.1261/rna.2192803
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82. doi: 10.1002/pro.3943
  • Xue B, Dunbrack RL, Williams RW, et al. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta. 2010;1804(4):996–1010. doi: 10.1016/j.bbapap.2010.01.011
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Kingston RE, Chen CA, Rose JK. Calcium phosphate transfection. Curr Protoc Mol Biol. 2003;63(1):9–1. doi: 10.1002/0471142727.mb0901s63
  • Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(Pt 3):213–232. doi: 10.1111/j.1365-2818.2006.01706.x
  • Wiśniewski JR, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi: 10.1038/nmeth.1322
  • Nguyen TN, Padman BS, Usher J, et al. Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation. J Cell Biol. 2016;215(6):857–874. doi: 10.1083/jcb.201607039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.