228
Views
0
CrossRef citations to date
0
Altmetric
Brief Report

The Wolfram-like variant WFS1E864K destabilizes MAM and compromises autophagy and mitophagy in human and mice

ORCID Icon, , ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 04 Oct 2023, Accepted 08 Apr 2024, Published online: 23 Apr 2024

References

  • Fonseca SG, Fukuma M, Lipson KL, et al. WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. J Biol Chem. 2005;280:39609–39615. doi: 10.1074/jbc.M507426200
  • Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet. 1995;346(8988):1458–1463. doi: 10.1016/S0140-6736(95)92473-6
  • Rigoli L, Bramanti P, Di Bella C, et al. Genetic and clinical aspects of wolfram syndrome 1, a severe neurodegenerative disease. Pediatr Res. 2018;83(5):921–929. doi: 10.1038/pr.2018.17
  • de Heredia ML, Clèries R, Nunes V, et al. Genotypic classification of patients with Wolfram syndrome: insights into the natural history of the disease and correlation with phenotype. Genet Med. 2013;15(7):497–506. doi: 10.1038/gim.2012.180
  • de Muijnck C, Brink JBT, Bergen AA, et al. Delineating Wolfram-like syndrome: a systematic review and discussion of the WFS1-associated disease spectrum. Surv Ophthalmol. 2023;68(4):641–654. doi: 10.1016/j.survophthal.2023.01.012
  • Eiberg H, Hansen L, Kjer B, et al. Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet. 2006;43(5):435–440. doi: 10.1136/jmg.2005.034892
  • Valéro R, Bannwarth S, Roman S, et al. Autosomal dominant transmission of diabetes and congenital hearing impairment secondary to a missense mutation in the WFS1 gene. Diabet Med. 2008;25(6):657–661. doi: 10.1111/j.1464-5491.2008.02448.x
  • Richard EM, Brun E, Korchagina J, et al. Wfs1E864K knock-in mice illuminate the fundamental role of Wfs1 in endocochlear potential production. Cell Death Dis. 2023;14(6):387. doi: 10.1038/s41419-023-05912-y
  • Cagalinec M, Liiv M, Hodurova Z, et al. Role of mitochondrial dynamics in neuronal development: mechanism for Wolfram syndrome. PLOS Biol. 2016;14(7):e1002511. doi: 10.1371/journal.pbio.1002511
  • Angebault C, Fauconnier J, Patergnani S, et al. ER-mitochondria cross-talk is regulated by the Ca2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci Signal. 2018;11(553):11. doi: 10.1126/scisignal.aaq1380
  • Crouzier L, Danese A, Yasui Y, et al. Activation of the sigma-1 receptor chaperone alleviates symptoms of Wolfram syndrome in preclinical models. Sci Transl Med. 2022;14(631):eabh3763. doi: 10.1126/scitranslmed.abh3763
  • Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs’ connection? Cell Death Dis. 2018;9(3):364. doi: 10.1038/s41419-018-0406-3
  • Kõks S, Overall RW, Ivask M, et al. Silencing of the WFS1 gene in HEK cells induces pathways related to neurodegeneration and mitochondrial damage. Physiol Genomics. 2013;45(5):182–190. doi: 10.1152/physiolgenomics.00122.2012
  • Zatyka M, Rosenstock TR, Sun C, et al. Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome. Stem Cell Rep. 2023;18(5):1090–1106. doi: 10.1016/j.stemcr.2023.04.002
  • Crouzier L, Richard EM, Diez C, et al. Morphological, behavioral and cellular analyses revealed different phenotypes in Wolfram syndrome wfs1a and wfs1b zebrafish mutant lines. Hum Mol Genet. 2022;31(16):2711–2727. doi: 10.1093/hmg/ddac065
  • Crouzier L, Richard EM, Diez C, et al. NCS1 overexpression restored mitochondrial activity and behavioral alterations in a zebrafish model of Wolfram syndrome. Mol Ther Methods Clin Dev. 2022;27:295–308. doi: 10.1016/j.omtm.2022.10.003
  • Zuleger N, Kelly DA, Richardson AC, et al. System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Bio. 2011;193(1):109–123. doi: 10.1083/jcb.201009068
  • Giorgi C, Bouhamida E, Danese A, et al. Relevance of autophagy and mitophagy dynamics and markers in neurodegenerative diseases. Biomedicines. 2021;9(2):149. doi: 10.3390/biomedicines9020149
  • Hernandez G, Thornton C, Stotland A, et al. MitoTimer. Autophagy. 2013;9(11):1852–1861. doi: 10.4161/auto.26501
  • Patergnani S, Marchi S, Rimessi A, et al. Prkcb/protein kinase C, beta and the mitochondrial axis as key regulators of autophagy. Autophagy. 2013;9(9):1367–1385. doi: 10.4161/auto.25239
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 2021;17:1–382. doi: 10.1080/15548627.2020.1797280
  • Tranebjærg L, Barrett T, Rendtorff ND WFS1 Wolfram syndrome spectrum disorder. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp, KW, Amemiya A, editor. GeneReviews®. Seattle (WA): University of Washington, Seattle;1993. cited 2022 Sep 1]. Available from. http://www.ncbi.nlm.nih.gov/books/NBK4144/
  • Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713–730. doi: 10.1038/s41580-018-0052-8
  • Giacomello M, Pellegrini L. The coming of age of the mitochondria–ER contact: a matter of thickness. Cell Death Differ. 2016;23(9):1417–1427. doi: 10.1038/cdd.2016.52
  • Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochim Biophys Acta, Mol Cell Res. 2019;1866(7):1068–1078. doi: 10.1016/j.bbamcr.2018.10.016
  • Yang M, Li C, Yang S, et al. Mitochondria-associated ER membranes – the origin Site of autophagy. Front Cell Dev Biol. 2020;8:595. doi: 10.3389/fcell.2020.00595
  • Liu J, Yang J. Mitochondria-associated membranes: a hub for neurodegenerative diseases. Biomed Pharmacother. 2022;149:112890. doi: 10.1016/j.biopha.2022.112890
  • Cárdenas C, Miller RA, Smith I, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell. 2010;142(2):270–283. doi: 10.1016/j.cell.2010.06.007
  • Missiroli S, Bonora M, Patergnani S, et al. PML at mitochondria-associated membranes is critical for the repression of autophagy and cancer development. Cell Rep. 2016;16(9):2415–2427. doi: 10.1016/j.celrep.2016.07.082
  • Ahumada-Castro U, Silva-Pavez E, Lovy A, et al. MTOR-independent autophagy induced by interrupted endoplasmic reticulum-mitochondrial Ca2+ communication: a dead end in cancer cells. Autophagy. 2018;15(2):358–361. doi: 10.1080/15548627.2018.1537769
  • Gelmetti V, De Rosa P, Torosantucci L, et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 2017;13(4):654–669. doi: 10.1080/15548627.2016.1277309
  • Vollrath JT, Sechi A, Dreser A, et al. Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis. 2014;5(6):e1290. doi: 10.1038/cddis.2014.243
  • Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. Nat Aging. 2021;1(8):634–650. doi: 10.1038/s43587-021-00098-4
  • Fernandes T, Resende R, Silva DF, et al. Structural and functional alterations in mitochondria-associated membranes (MAMs) and in mitochondria activate stress response mechanisms in an in vitro model of alzheimer’s disease. Biomedicines. 2021;9(8):881. doi: 10.3390/biomedicines9080881
  • Johri A, Connection Lost CA. Connection Lost, MAM: errors in ER–mitochondria connections in neurodegenerative diseases. Brain Sci. 2021;11(11):1437. doi: 10.3390/brainsci11111437
  • Degechisa ST, Dabi YT, Gizaw ST. The mitochondrial associated endoplasmic reticulum membranes: A platform for the pathogenesis of inflammation-mediated metabolic diseases. Immunity Inflam & Disease. 2022;10(7):e647. doi: 10.1002/iid3.647
  • Li L, Venkataraman L, Chen S, et al. Function of WFS1 and WFS2 in the central nervous System: implications for Wolfram Syndrome and alzheimer’s disease. Neurosci Biobehav Rev. 2020;118:775–783. doi: 10.1016/j.neubiorev.2020.09.011
  • Delettre C, Lenaers G, Griffoin J-M, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26(2):207–210. doi: 10.1038/79936
  • Del Dotto V, Carelli V. Dominant Optic Atrophy (DOA): modeling the kaleidoscopic roles of OPA1 in mitochondrial homeostasis. Front Neurol. 2021;12:681326. doi: 10.3389/fneur.2021.681326
  • Zaman M, Shutt TE. The role of impaired mitochondrial dynamics in MFN2-mediated pathology. Front Cell Dev Biol. 2022 [cited 2023 Sep 1];10. Available from: https://doi.org/10.3389/fcell.2022.858286
  • Su T-P, Hayashi T, Maurice T, et al. The sigma-1 receptor chaperone as an inter-organelle signaling modulator. Trends Pharmacol Sci. 2010;31(12):557–566. doi: 10.1016/j.tips.2010.08.007
  • Angebault C, Gueguen N, Desquiret-Dumas V, et al. Idebenone increases mitochondrial complex I activity in fibroblasts from LHON patients while producing contradictory effects on respiration. BMC Res Notes. 2011;4(1):557. doi: 10.1186/1756-0500-4-557
  • Morciano G, Patergnani S, Pedriali G, et al. Impairment of mitophagy and autophagy accompanies calcific aortic valve stenosis favouring cell death and the severity of disease. Cardiovasc Res. 2022;118(11):2548–2559. doi: 10.1093/cvr/cvab267
  • Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1(2):94–99. doi: 10.4103/0976-500X.72351
  • Bonora M, Giorgi C, Bononi A, et al. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc. 2013;8(11):2105–2118. doi: 10.1038/nprot.2013.127
  • Koopman WJH, Visch H-J, Smeitink JAM, et al. Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry Part A. 2006;69A(1):1–12. doi: 10.1002/cyto.a.20198
  • Sage D, Donati L, Soulez F, et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods. 2017;115:28–41. doi: 10.1016/j.ymeth.2016.12.015
  • Kirshner H, Aguet F, Sage D, et al. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J Microsc. 2013;249(1):13–25. doi: 10.1111/j.1365-2818.2012.03675.x
  • Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006;224(3):213–232. doi: 10.1111/j.1365-2818.2006.01706.x
  • Patergnani S, Bonora M, Ingusci S, et al. Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc Natl Acad Sci USA. 2021;118(24):e2020078118. doi: 10.1073/pnas.2020078118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.