31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Convenient transformation of thioamides and thioketones to their oxygen analogues with singlet oxygen generated from trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolan-3-yl ethaneperoxate

Received 01 Feb 2024, Accepted 27 Mar 2024, Published online: 08 Apr 2024

References

  • Barton D, Ollis WD, Jones DN. Comprehensive organic chemistry. The synthesis and reactions of organic compounds. Oxford: Pergamon Press; 1979. Vol. 3, Part II, p. 3–487.
  • Schaumann E, Trost BM, Fleming I, et al. Comprehensive organic synthesis. Oxford: Pergamon Press; 1991. Vol. 6, p. 419–434.
  • Gan Z, Li G, Yan Q, et al. Visible-light-promoted oxidative desulphurisation: a strategy for the preparation of unsymmetrical ureas from isothiocyanates and amines using molecular oxygen. Green Chem 2020;22:2956–2962. doi:10.1039/D0GC00070A
  • Yadav AK, Srivastava VP, Yadav LDS. Visible-light-mediated eosin Y catalyzed aerobic desulfurization of thioamides into amides. New J Chem 2013;37:4119–4124. doi:10.1039/c3nj00870c
  • Yang Z, Zhou H, Wang L, et al. Visible-light-promoted and chlorophyll-catalyzed aerobic desulfurization of thioamides to amides. RSC Adv 2022;12:17190–17193. doi:10.1039/D2RA01930B
  • Bahrami K, Khodaei MM, Farrokhi A. H2o2/SOCl2: a useful reagent system for the conversion of thiocarbonyls to carbonyl compounds. Tetrahedron. 2009;65:7658–7661. doi:10.1016/j.tet.2009.06.110
  • Shibahara F, Suenami A, Yoshida A, et al. Copper-catalyzed oxidative desulfurization–oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds. Chem Commun. 2007;23:2354–2356. doi:10.1039/B701048F
  • Bahrami K, Khodaei MM, Shakibaian V, et al. TiCl4-promoted desulfurization of thiocarbonyls and oxidation of sulfides in the presence of H2O2. J Sulfur Chem. 2012;33:155–163. doi:10.1080/17415993.2011.647915
  • Xu N, Jin X, Suzuki K, et al. Phosphovanadomolybdic acid catalyzed desulfurization–oxygenation of secondary and tertiary thioamides into amides using molecular oxygen as the terminal oxidant. New J Chem. 2016;40:4865–4869. doi:10.1039/C5NJ03579A
  • Mohammadpoor-baltork I, Sadeghi M, Esmayilpour K. Convenient transformation of thiocarbonyl to carbonyl group using benzyltriphenylphosphonium and n-butyltriphenylphosphonium peroxodisulfates. J Chem Res. 2003;2003:348–350. doi:10.3184/030823403103174074
  • Movassagh B, Lakouraj MM, Ghodrati K. Caro's acid supported on silica gel. Part 21: conversion of thioamides into amides. Synth Commun. 2000;30:2353–2358. doi:10.1080/00397910008086876
  • Tajbakhsh M, Mohammadpoor-baltork I, Alimohammadi SK. Selective conversion of thioamides and thioureas to their oxygen analogues using quinolinium fluorochromate. Indian J Chem. 2003;42 B:2638–2640.
  • Bahrami K, Khodaei MM, Tajik M. Trimethylsilyl chloride promoted selective desulfurization of thiocarbonyls to carbonyls with hydrogen peroxide. Synthesis (Mass). 2010;2010:4282–4286. doi:10.1055/s-0030-1258283
  • Inamoto K, Shiraishi M, Hiroya K, et al. Facile conversion of thioamides into the corresponding amides in the presence of tetrabutylammonium bromide. Synthesis (Mass). 2010;2010:3087–3090. doi:10.1055/s-0030-1258154
  • Lakouraj MM, Ghodrati K. A facile and convenient method for the conversion of thioamides into amides using pyridinium hydrobromide perbromide. Monatsh Chem. 2008;139:549–551. doi:10.1007/s00706-007-0787-y
  • Nasr-Esfahani M, Montazerozohori M, Moghadam M, et al. Transformation of thioamide compounds to corresponding amides using 12-tungstosilicic acid. Phosphorus Sulfur Relat Elem. 2010;185:261–266. doi:10.1080/10426500902758964
  • Mohammadpoor-baltork I, Khodaei MM, Nikoofar K. Bismuth(III) nitrate pentahydrate: a convenient and selective reagent for conversion of thiocarbonyls to their carbonyl compounds. Tetrahedron Lett. 2003;44:591–594. doi:10.1016/S0040-4039(02)02516-9
  • Mohammadpoor-baltork I, Sadeghi MM, Esmayilpour K. A convenient and inexpensive method for conversion of thiocarbonyl compounds to their oxo derivatives using oxone under solvent-free conditions. Synth Commun. 2003;33(6):953–959. doi:10.1081/SCC-120016359
  • Mohammadpoor-baltork I, Memarian HR, Hajipour AR, et al. Transformation of thiocarbonyls to their corresponding carbonyl compounds using n-butyltriphenylphosphonium dichromate (Bun PPh3)2Cr2O7 in solution and under microwave irradiation. Bull Korean Chem Soc. 2003;24:1002–1004. doi:10.5012/bkcs.2003.24.7.1002
  • Bahrami K, Khodaei MM, Tirandaz Y. Desulfurization of thioamidesinto amides with H2O2/ZrCl4 ReagentSystem. Synthesis (Mass). 2009;2009(3):369–371. doi:10.1055/s-0028-1083314
  • Boudebouz L, Arrous S, Parunov LV. Oxidation of thioamides to amides with tetrachloro- and tetrabromoglycolurils. Russ J Org Chem. 2019;55:1874–1877. doi:10.1134/S1070428019120108
  • Tamagaki S, Hatanaka I, Kozuka S. Reduction of selenoxides with thione reagents. Bull Chem Soc Jpn. 1977;50:3421–3422. doi:10.1246/bcsj.50.3421
  • Abuzar S, Sharma S, Iyer RN. A new convenient method of desulphurization of thioureas and thioamides. Indian J Chem. 1980;19B:211–212.
  • Cussans NJ, Ley SV, Barton DHR. Conversion of thiocarbonyl compounds into their corresponding oxoderivatives using benzeneseleninic anhydride. J Chem Soc Perkin Trans. 1980;1:1650–1653. doi:10.1039/p19800001650
  • Hayatsu H, Yano M. Permanganate oxidation of 4-thiouracil derivatives. isolation and properties of 1-substituted-2-pyrimidone-4-sulfonates. Tetrahedron Lett. 1969;10:755–758. doi:10.1016/S0040-4039(01)87801-1
  • Lown JW, Maloney TW. Diphenylcyclopropenethione S-oxide. J Org Chem. 1970;35:1716–1718. doi:10.1021/jo00830a118
  • EI-Wassimy MTM, Jϕrgensen KA, Lawesson S-O. The reaction of t-butyl hypochlorite with thiocarbonyl compound – a convenient method for the transformation. Tetrahedron. 1983;39:1729–1734. doi:10.1016/S0040-4020(01)88679-8
  • Hurd RN, DeLaMater G. The preparation and chemical properties of thionamides. Chem Rev. 1961;61:45–86. doi:10.1021/cr60209a003
  • Ulrich H, Sayigh AAR. Synthesis of isocyanates and carbodiimides. Angew Chem Int Ed. 1966;5:704–712. doi:10.1002/anie.196607041
  • Carlsen L. On the possible intermediates in the ozonolysis of thiocarbonyl compounds. Tetrahedron Lett. 1977;18:4103–4106. doi:10.1016/S0040-4039(01)83438-9
  • Corsaro A, Pistara V. Conversion of the thiocarbonyl group into the carbonyl group. Tetrahedron. 1998;54:15027–15062. doi:10.1016/S0040-4020(98)00880-1
  • Wang Y, Lin Y, He S, et al. Singlet oxygen: properties, generation, detection, and environmental applications. J Hazard Mater. 2024;461:132538. doi:10.1016/j.jhazmat.2023.132538
  • Zheng N, He X, Hu R, et al. In-situ production of singlet oxygen by dioxygen activation on iron phosphide for advanced oxidation processes. Appl Catal B Environ. 2022;307:121157. doi:10.1016/j.apcatb.2022.121157
  • Azarifar D, Najminejad Z. Oxidative cleavage of C=C bonds with singlet molecular oxygen generated from monoacetylated bishydroperoxides. Synlett. 2013;24:1377–1382. doi:10.1055/s-0033-1338947
  • Hang J, Ghorai P, Finkenstaedt-Quinn S, et al. Generation of singlet oxygen from fragmentation of monoactivated 1,1-dihydroperoxides. J Org Chem. 2012;77:1233–1243. doi:10.1021/jo202265j
  • Najminejad Z. Chemoselective benzylic oxidation of alkyl-substituted aromatics with singlet molecular oxygen generated from trans-3,5 hydroperoxy-3,5 dimethyl-1,2-dioxolan-3-yl ethaneperoxate. Synth Commun. 2022;52:2301–2310. doi:10.1080/00397911.2022.2145226
  • Najminejad Z, Sameri F. C–N bond cleavage of benzylamines with singlet molecular oxygen generated from trans-5-hydroperoxy-3,5dimethyl-1,2-dioxolan-3-yl ethaneperoxate: synthesis of 2,4,6-triaryl pyridines. J Chem Sci. 2023;135:72–79. doi:10.1007/s12039-023-02205-x
  • Najminejad Z. Oxidative decarboxylation of arylacetic acids and arylacetic esters with singlet molecular oxygen generated from trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolan-3-yl ethaneperoxate. J Chem Sci. 2024;136:11. doi:10.1007/s12039-023-02243-5
  • Najminejad Z. Oxidative cleavage of C=N bond of ketoximes with singlet molecular oxygen generated from trans-5-hydroperoxy-3,5-dimethyl-1,2-dioxolane-3-yl ethaneperoxoate. Org Prep Proced Int. 2024:1–8. doi:10.1080/00304948.2023.2298133
  • Azarifar D, Najminejad Z, Khosravi K. Synthesis of gem-dihydroperoxides from ketones and aldehydes using silica sulfuric acid as heterogeneous reusable catalyst. Synth Commun. 2013;43:826–836. doi:10.1080/00397911.2011.610549
  • Azarifar D, Khosravi K, Najminejad Z, et al. Regioselective bromination and iodination of aromatic substrates promoted by trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane. J Iran Chem Soc. 2012;9:321–326. doi:10.1007/s13738-011-0026-7
  • Azarifar D, Najminejad Z, Khosravi K. Catalyst-free selective oxidation of alcohols to carbonyls using trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane as an efficient oxidant. J Iran Chem Soc. 2013;10:979–983. doi:10.1007/s13738-013-0235-3
  • Azarifar D, Khatami S-M, Najminejad Z. Ultrasound-accelerated selective oxidation of primary aromatic amines to azoxy derivatives with trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane catalyzed by preyssler acid-mediated nano-TiO2. J Iran Chem Soc. 2014;11:587–592. doi:10.1007/s13738-013-0328-z
  • Azarifar D, Najminejad Z. Direct oxidative conversion of benzylhalides, -amines, -alcohols, and arylaldehydes to nitriles with trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane activated by NH4Br. J Iran Chem Soc. 2015;12:107–111. doi:10.1007/s13738-014-0461-3
  • Najminejad Z, Ghanipour M. Chemoselective benzylic oxidation of alkyl-substituted aromatics to ketones with trans-3,5-dihydroperoxy-3,5 dimethyl-1,2-dioxolane. Org Prep Proced Int. 2022;54:511–516. doi:10.1080/00304948.2022.2090220
  • Azarifar D, Khosravi K, Najminejad Z, et al. Synthesis of 1,2-disubstituted benzimidazoles and 2-substituted benzothiazoles catalyzed by HCl-treated trans-3,5-dihydroperoxy-3,5-dimethyl-1,2-dioxolane. Heterocycles. 2010;81:2855–2863. doi:10.3987/COM-10-12068
  • Zou X, Dai X, Liu K, et al. Photophysical and photochemical properties of 4-thiouracil: time-resolved IR spectroscopy and DFT studies. J Phys Chem B. 2014;118:5864–5872. doi:10.1021/jp501658a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.