75
Views
0
CrossRef citations to date
0
Altmetric
Review

Machine learning and its current and future applications in the management of vitreoretinal disorders

, , &
Pages 227-242 | Received 04 Nov 2023, Accepted 06 Mar 2024, Published online: 14 Mar 2024

References

  • McCarthy J, Minsky ML, Rochester N, et al. A proposal for the Dartmouth Summer Research Project on artificial intelligence. AI Mag. 2006;27:12.
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 2012;25 [accessed 2023 Sep 26]. [Online]. Available from: http://code.google.com/p/cuda-convnet/
  • Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719–31.
  • Singh D, Kumar V, Das CJ, et al. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring. NMR Biomed. 2021;34(6):e4495. doi: 10.1002/nbm.4495
  • Baidya Kayal E, Ganguly S, Sasi A, et al. A proposed methodology for detecting the malignant potential of pulmonary nodules in sarcoma using computed tomographic imaging and artificial intelligence-based models. Front Oncol. 2023 [Published 2023 Aug 21];13:1212526.
  • Singh D, Kumar V, Das CJ, et al. Machine learning-based analysis of a semi-automated PI-RADS v2.1 scoring for prostate cancer. Front Oncol. 2022;12. [Online]. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2022.961985
  • Vashistha R, Dangi AK, Kumar A, et al. Futuristic biosensors for cardiac health care: an artificial intelligence approach. 3 Biotech. 2018;8(8):358.8.
  • Li AJP, Haq US, Din U, et al. Heart disease identification method using machine learning classification in E-healthcare. IEEE Access. 2020;8:107562–107582. doi: 10.1109/ACCESS.2020.3001149
  • Rabhi Y, Mrabet M, Fnaiech F. A facial expression controlled wheelchair for people with disabilities. Comput Methods Programs Biomed. 2018;165:89–105. doi: 10.1016/j.cmpb.2018.08.013
  • Tumpa SN, Islam AB, Ankon MTM Smart care: an intelligent assistant for pregnant mothers. 4th International Conference on Advances in Electrical Engineering, ICAEE 2017. 2018 Jan. p. 754–759. doi: 10.1109/ICAEE.2017.8255455
  • Fogel AL, Kvedar JC. Artificial intelligence powers digital medicine. NPJ Digit Med. 2018 Mar 14;1(1):5. doi: 10.1038/s41746-017-0012-2
  • Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14–15. doi: 10.1038/s41591-018-0320-3
  • Alexandropoulos SAN, Kotsiantis SB, Vrahatis MN. Data pre-processing in predictive data mining. Knowl Eng Rev. 2019;34. doi: 10.1017/S026988891800036X
  • Javeed M, Jalal A, Kim K. Wearable sensors based exertion recognition using statistical features and random forest for physical healthcare monitoring object detection and segmentation for scene understanding via random forest view project contextual scene understanding: template objects detector and feature descriptors for indoor/outdoor scenarios view project wearable sensors based exertion recognition using statistical features and random forest for physical healthcare monitoring [cited 2023 Sep 29]. [Online]. Available from: https://www.researchgate.net/publication/346879565
  • Venkatesan C, Karthigaikumar P, Paul A, et al. ECG signal preprocessing and SVM classifier based abnormality detection in remote healthcare applications. IEEE. 2018;6:9767–9773. doi: 10.1109/ACCESS.2018.2794346
  • Fawagreh K, Medhat Gaber M. Resource-efficient fast prediction in healthcare data analytics: a pruned random forest regression approach. Computing. 2020;102(5):1187–1198. doi: 10.1007/s00607-019-00785-6
  • Ben-Haim Y, Com YI A streaming parallel decision tree algorithm Elad Tom-Tov. J Mac Learn Res 2010;11:849–872.
  • Breiman L Random forests. Mach Learn. 2001;45(1):5–32. doi: 10.1023/A:1010933404324
  • Biau G, Scornet E. A random forest guided tour. TEST. 2016;25:197–227. doi: 10.1007/s11749-016-0481-7
  • Balaji TK, Annavarapu CSR, Bablani A. Machine learning algorithms for social media analysis: a survey. Comput Sci Rev. 2021;40:100395. doi: 10.1016/j.cosrev.2021.100395
  • Sarker IH Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2021;2(3):1–21 doi: 10.1007/s42979-021-00592-x
  • Ray S. A quick review of machine learning algorithms. IEEE Xplore. 2019;35–39. doi: 10.1109/COMITCon.2019.8862451
  • Maulud D, Abdulazeez AM A review on linear regression comprehensive in machine learning. J App Sci Tech Trends 2020;1(2):140–147. doi: 10.38094/jastt1457
  • James DG, Witten T, Hastie R, et al. Linear regression. An introduction to statistical learning: with applications in python. In: James G, Witten D, Hastie T, Tibshirani R Taylor J, editors. Cham: Springer International Publishing; 2023. p. 69–134. doi: 10.1007/978-3-031-38747-0_3.
  • Haraty RA, Dimishkieh M, Masud M An enhanced k-means clustering algorithm for pattern discovery in healthcare data. International Journal Of Distributed Sensor Networks 2015; 11: 615740. doi: 10.1155/2015/615740. 6
  • Shahid N, Rappon T, Berta W, et al. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PloS One. 2019;14; 2(2):e0212356. [Online]. Available from: 10.1371/journal.pone.0212356.
  • Bengio Y Learning deep architectures for AI. FNT In Mach Learn. 2009;2(1):1–127. doi: 10.1561/2200000006
  • Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bio-Inform. 2018 Nov;19(6):1236–1246. doi: 10.1093/bib/bbx044
  • Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–29. doi: 10.1038/s41591-018-0316-z
  • Brosch T, Tam R Manifold learning of brain MRIs by deep learning. In: Mori K, Sakuma I, Sato Y, et al., editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science. Vol. 8150. Berlin, Heidelberg: Springer; 2013. doi: 10.1007/978-3-642-40763-5_78
  • Brosch T, Tam R. Manifold learning of brain MRIs by deep learning. In: Mori K, Sakuma I, Sato Y, et al., editors. Medical Image Computing and Computer-Assisted Intervention– MICCAI 2013. Berlin Heidelberg: Springer; 2013. p. 633–640.
  • Baucum M, Khojandi A, Vasudevan R. Improving deep reinforcement learning with transitional variational autoencoders: a healthcare application. IEEE J Biomed Health Inform. 2021;25:2273–2280. doi: 10.1109/JBHI.2020.3027443
  • Kingma DP, Welling M. Auto-Encoding variational Bayes. CoRR. 2013;abs/1312:6114. Available from: https://api.semanticscholar.org/CorpusID:216078090
  • Goodfellow IJ, Abadie JP, Mirza M, et al. Generative adversarial nets. Advances in neural information processing systems. In: Ghahramani Z, Welling M, Lawrence C Weinberger K. editors, Curran Associates, Inc.; 2014. [Online]. Available from: https://proceedings.neurips.cc/paper_files/paper/2014
  • Cheng JZ, Ni D, Chou YH, et al. Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT Scans. Sci Rep. 2016;6(1):24454. doi: 10.1038/srep24454
  • Nova K. Generative AI in healthcare: advancements in electronic health records, facilitating medical languages, and personalized patient care. J Adv Anal Healthcare Manag 2023; 7: 115–131. https://research.tensorgate.org/index.php/JAAHM/article/view/43
  • Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res. 2018; 67:1–29. doi: 10.1016/j.preteyeres.2018.07.004.
  • GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the Global Burden of Disease Study [published correction appears in lancet glob health. 2021 Apr;9(4): e408]. Lancet Glob Health. 2021;9(2):e144–e160. doi: 10.1016/S2214-109X(20)30489-7
  • Sayres R, Taly A, Rahimy E, et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmol. 2019;126(4):552–564.
  • Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors.Eye Vis (Lond). 2016 [Published 2016 Dec 22];3(1):34. doi: 10.1186/s40662-016-0063-5
  • Lee R, Wong TY, Sabanayagam C Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond). 2015;2(1):17. doi: 10.1186/s40662-015-0026-2
  • Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology Recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmol. 2018;125(10):1608–22. doi: 10.1016/j.ophtha.2018.04.007
  • Dong L, He W, Zhang R, et al. Artificial intelligence for screening of multiple retinal and optic nerve diseases. JAMA Netw Open. 2022 May 2;5(5):e229960. 10.1001/jamanetworkopen.2022.9960.
  • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10. doi: 10.1001/jama.2016.17216.
  • Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs. Diabetes Care. 2018;41(12):2509–16. doi: 10.2337/dc18-0147
  • Varadarajan AV, Bavishi P, Ruamviboonsuk P, et al. Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nat Commun. 2020 [Published 2020 Jan 8];11(1):130. doi: 10.1038/s41467-019-13922-8
  • Peng Y, Dharssi S, Chen Q, et al. DeepSeeNet: a deep learning Model for automated classification of Patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmol. 2019;126(4):565–75. doi: 10.1016/j.ophtha.2018.11.015.
  • Grassmann F, Mengelkamp J, Brandl C, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmol. 2018;125(9):1410–1420.
  • Keenan TD, Dharssi S, Peng Y, et al. A deep learning approach for automated detection of geographic atrophy from color fundus photographs. Ophthalmol. 2019;126(11):1533–1540.
  • Tan T-E, Anees A, Chen RC, et al. Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study. Lancet Digit Health. 2021;3(5):e317–e329. doi: 10.1016/S2589-7500(21)00055-8.
  • Brown JM, Campbell JP, Beers A, et al. Imaging and informatics in retinopathy of prematurity (i-ROP) research consortium. automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136(7):803–810.
  • Redd TK, Campbell JP, Brown JM, et al. Imaging and informatics in retinopathy of prematurity (i-ROP) research consortium. evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2018 Nov 23. doi: 10.1136/bjophthalmol-2018-313156
  • Mao J, Luo Y, Liu L, et al. Automated diagnosis and quantitative analysis of plus disease in retinopathy of prematurity based on deep convolutional neural networks. Acta Ophthalmol. 2020; 98(3):e339–e345. doi: 10.1111/aos.14264.
  • World Health Organization. Global report on diabetes. World Health Org; 2016.
  • Rosenberg JB, Tsui I. Screening for diabetic retinopathy. N Engl J Med. 2017;376(16):1587–1588. doi: 10.1056/NEJMe1701820
  • Rani PK, Takkar B, Das T Training of non-ophthalmologists in diabetic retinopathy screening. Indian J Ophthalmol. 2021;69(11):3072–3075. doi: 10.4103/ijo.IJO_1117_21
  • Surendran TS, Raman R. Teleophthalmology in diabetic retinopathy. J Diabetes Sci Technol. 2014;8(2):262–66. doi: 10.1177/1932296814522806
  • Taylor CR, Merin LM, Salunga AM, et al. Improving diabetic retinopathy screening ratios using telemedicine-based digital retinal imaging technology: the vine hill study. Diabetes Care. 2007;30(3):574–578. doi: 10.2337/dc06-1509
  • Mohammadpour M, Heidari Z, Mirghorbani M, et al. Smartphones, tele-ophthalmology, and VISION 2020. Int J Ophthalmol. 2017;10(12):1909. doi: 10.18240/ijo.2017.12.19
  • Grzybowski A, Brona P, Lim G, et al. Artificial intelligence for diabetic retinopathy screening: a review [published correction appears in eye (lond). 2019 Dec 10. Eye (Lond). 2020;34(3):451–460.
  • Padhy SK, Takkar B, Chawla R, et al. Artificial intelligence in diabetic retinopathy: a natural step to the future. Indian J Ophthalmol. 2019;67(7):1004–1009.
  • US Food and Drug Administration. FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. 2018 Apr 11. Available from: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm.
  • Wong LY, Acharya R, Venkatesh YV, et al. Identification of different stages of diabetic retinopathy using retinal optical images. Information Sciences. 2008;178(1):106–121. 10.1016/j.ins.2007.07.020
  • Imani E, Pourreza HR, Banaee T. Fully automated diabetic retinopathy screening using morphological component analysis. Comput Med Imaging Graph. 2015;43:78–88. doi: 10.1016/j.compmedimag.2015.03.004
  • Yazid H, Arof H, Isa HM. Automated identification of exudates and optic disc based on inverse surface thresholding. J Med Syst. 2012;36(3):1997–2004. doi: 10.1007/s10916-011-9659-4
  • Akyol K, B Ş, Ş B. Automatic detection of optic disc in retinal image by using keypoint detection, texture analysis, and visual dictionary techniques. Comput Math Meth Med. 2016;2016:6814791. doi: 10.1155/2016/6814791
  • Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye (Lond). 2018;32(6):1138–44. doi: 10.1038/s41433-018-0064-9
  • Bhaskaranand M, Ramachandra C, Bhat S, et al. Automated diabetic retinopathy screening and monitoring using retinal fundus image analysis. J Diabetes Sci Technol. 2016;10(2):254–261. doi: 10.1177/1932296816628546
  • Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–2223.
  • Abràmoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 2013;131(3):351–57. doi: 10.1001/jamaophthalmol.2013.1743
  • Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–5206. doi: 10.1167/iovs.16-19964
  • Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1(1):39.
  • Vander Heijden AA, Abramoff MD, Verbraak F, et al. Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the hoorn diabetes care system. Acta Ophthalmol. 2018;96(1):63–68.
  • Tufail A, Kapetanakis VV, Salas-Vega S, et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost- effectiveness. Health Technol Assess (Rockv). 2016;20:1–72 xxviii. doi: 10.3310/hta20920
  • Solanki K, Ramachandra C, Bhat S, et al. EyeArt: automated, high-throughput, image analysis for diabetic retinopathy screening. Invest Ophthalmol Vis Sci. 2015; 56:1429.
  • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–2410. doi: 10.1001/jama.2016.17216
  • Ting DSW, Cheung C-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–2223.
  • Kapoor R, Whigham BT, Al-Aswad LA. Artificial intelligence and optical coherence tomography imaging. Asia-Pac J Ophthalmol. 2019 Mar;8(2):187–194. doi: 10.22608/APO.201904
  • Liu YY, Ishikawa H, Chen M, et al. Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci. 2011;52(11):8316–22. doi: 10.1167/iovs.10-7012
  • Syed AM, Hassan T, Akram MU, et al. Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Comput Methods Programs Biomed. 2016;137:1–10. doi: 10.1016/j.cmpb.2016.09.004
  • Sun Y, Li S, Sun Z. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning. J Biomed Opt. 2017;22(1):16012. doi: 10.1117/1.JBO.22.1.016012
  • Chan GCY, Kamble R, Muller H, et al. Fusing results of several deep learning architectures for automatic classification of normal and diabetic macular edema in optical coherence tomography. Annu Int Conf IEEE Eng Med Biol Soc. 2018; 2018:670–673.
  • Alsaih K, Lemaitre G, Rastgoo M, et al. Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed Eng Online. 2017;16(1):68. doi: 10.1186/s12938-017-0352-9
  • Gerendas BS, Bogunovic H, Sadeghipour A, et al. Computational image analysis for prognosis determination in DME. Vision Res. 2017;139:204–210. doi: 10.1016/j.visres.2017.03.008
  • Romond K, Alam M, Kravets S, et al. Imaging and artificial intelligence for progression of age-related macular degeneration. Exp Biol Med (Maywood). 2021;246(20):2159–69. doi: 10.1177/15353702211031547
  • Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135(11):1170–76. doi: 10.1001/jamaophthalmol.2017.3782
  • Bhuiyan A, Wong TY, Ting DSW, et al. Artificial intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD. Transl Vis Sci Technol. 2020;9(2):25. doi: 10.1167/tvst.9.2.25
  • Saha S, Nassisi M, Wang M, et al. Automated detection and classification of early AMD biomarkers using deep learning. Sci Rep. 2019;9(1):10990. doi: 10.1038/s41598-019-47390-3
  • Roy AG, Conjeti S, Karri SPK, et al. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed Opt Express. 2017;8(8):3627–3642.
  • Venhuizen FG, van Ginneken B, van Asten F, et al. Automated staging of age-related macular degeneration using optical coherence tomography. Invest Ophthalmol Vis Sci. 2017;58(4):2318–28. doi: 10.1167/iovs.16-20541
  • Chakravarthy U, Goldenberg D, Young G, et al. Automated identification of lesion activity in neovascular age-related macular degeneration. Ophthalmol. 2016 Aug 1;123(8):1731–6. doi: 10.1016/j.ophtha.2016.04.005
  • Chen Q, Leng T, Zheng L, et al. Automated drusen segmentation and quantification in SD-OCT images. Med Image Anal. 2013 Dec 1;17(8):1058–72. doi: 10.1016/j.media.2013.06.003
  • Schmidt-Erfurth U, Waldstein SM, Deak GG, et al. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration ophthalmology. Ophthalmol. 2015;122(4):822–32. doi: 10.1016/j.ophtha.2014.11.017
  • Bogunović H, Waldstein SM, Schlegl T, et al. Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Visual Sci. 2017 Jun 1;58(7):3240–8. doi: 10.1167/iovs.16-21053
  • Bogunovic H, Waldstein SM, Sadeghipour A, et al. Artificial intelligence to predict optimal retreatment intervals in treat-and-extend (T&E). Invest Ophthalmol Visual Sci. 2018 Jul 13;59(9):1620–.
  • Prahs P, Radeck V, Mayer C, et al. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefe’s Arch Clin Exp Ophthalmol. 2018;256(1):91–8. doi: 10.1007/s00417-017-3839-y
  • Schlegl T, Waldstein SM, Bogunovic H, et al. Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmol. 2018 1;125(4):549–58. doi: 10.1016/j.ophtha.2017.10.031
  • Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, et al. Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol Retina. 2018 1;2(1):24–30. doi: 10.1016/j.oret.2017.03.015
  • Waldstein SM, Gerendas BS, Montuoro A, et al. Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. Br J Ophthalmol. 2015 Jun 1;99(6):794–800. doi: 10.1136/bjophthalmol-2014-305573
  • Schlanitz FG, Baumann B, Kundi M, et al. Drusen volume development over time and its relevance to the course of age-related macular degeneration. Br J Ophthalmol. 2017 Feb 1;101(2):198–203. doi: 10.1136/bjophthalmol-2016-308422
  • Bogunović H, Montuoro A, Baratsits M, et al. Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging. Invest Ophthal Vis Sci. 2017 May 1;58(6):BIO141–50. doi: 10.1167/iovs.17-21789
  • Schmidt-Erfurth U, Waldstein SM, Klimscha S, et al. Prediction of individual disease conversion in early AMD using artificial intelligence. Invest Ophthalmol Visual Sci. 2018 Jul 2;59(8):3199–208. doi: 10.1167/iovs.18-24106
  • Niu S, de Sisternes L, Chen Q, et al. Fully automated prediction of geographic atrophy growth using quantitative spectral-domain optical coherence tomography biomarkers. Ophthalmol. 2016 Aug 1;123(8):1737–50. doi: 10.1016/j.ophtha.2016.04.042
  • de Sisternes L, Simon N, Tibshirani R, et al. Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression. Invest Ophthalmol Vis Sci. 2014 Nov 1;55(11):7093–7103. doi: 10.1167/iovs.14-14918
  • Sabri K, Ellis AL, Lee EY, et al. Retinopathy of prematurity: a global perspective and recent developments. Pediatrics. 2022;150(3):e2022053924.
  • Wittenberg LA, Jonsson NJ, Chan RV, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 2012;49(1):11–19. doi: 10.3928/01913913-20110222-01
  • Scruggs BA, Chan RVP, Kalpathy-Cramer J, et al. Artificial intelligence in retinopathy of prematurity diagnosis. Transl Vis Sci Technol. 2020;9(2):5. doi: 10.1167/tvst.9.2.5
  • Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, et al. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: performance of the “i-ROP” system and image features associated with expert diagnosis. Transl Vis Sci Technol. 2015;4(6):5. doi: 10.1167/tvst.4.6.5
  • Worrall DE, Wilson CM, Brostow GJ Automated retinopathy of prematurity case detection with convolutional neural networks. In: Carneiro G, editor. Deep learning and data labeling for medical applications. Athens (Greece): Springer International Publishing AG 2016. LNCS 10008; 2016. p. 68–76. doi: 10.1007/978-3-319-46976-88
  • Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018;136(7):803–810. doi: 10.1001/jamaophthalmol.2018.1934
  • Mulay S, Ram K, Sivaprakasam M, et al. Early detection of retinopathy of prematurity stage using deep learning approach. Paper presented at: SPIE Medical Imaging 2019, 2019; San Diego (CA).
  • Zhao J, Lei B, Wu Z, et al. A deep learning framework for identifying zone I ROP in RetCam images. Vol. 7. IEEE Access; 2019. p. 103530–103537.
  • Wang J, Ju R, Chen Y, et al. Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine. 2018;35:361–368. doi: 10.1016/j.ebiom.2018.08.033
  • Hu J, Chen Y, Zhong J, et al. Automated analysis for retinopathy of prematurity by deep neural networks. IEEE Trans Med Imaging. 2019;38(1):269–279. doi: 10.1109/TMI.2018.2863562
  • Redd TK, Campbell JP, Brown JM, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2019;103(5):580–584.
  • Taylor S, Brown JM, Gupta K, et al. Monitoring disease progression with a quantitative severity scale for retinopathy of prematurity using deep learning. JAMA Ophthalmol. 2019;137(9):1022–28. doi: 10.1001/jamaophthalmol.2019.2433
  • Gupta K, Campbell JP, Taylor S, et al. A quantitative severity scale for retinopathy of prematurity using deep learning to monitor disease regression after treatment. JAMA Ophthalmol. 2019;137(9):1029–36. doi: 10.1001/jamaophthalmol.2019.2442
  • Campbell JP, Chiang MF, Chen JS, et al. Artificial intelligence for retinopathy of prematurity: validation of a vascular severity scale against international expert diagnosis. Ophthalmol. 2022;129(7):e69–e76. doi: 10.1016/j.ophtha.2022.02.008
  • Coyner AS, Oh MA, Shah PK, et al. External validation of a retinopathy of prematurity screening model using artificial intelligence in 3 low- and middle-income populations. JAMA Ophthalmol. 2022;140(8):791–98. doi: 10.1001/jamaophthalmol.2022.2135
  • Eilts SK, Pfeil JM, Poschkamp B, et al. Assessment of retinopathy of prematurity regression and reactivation using an artificial intelligence-based vascular severity score. JAMA Netw Open. 2023;6(1):e2251512.
  • Campbell JP, Singh P, Redd TK, et al. Applications of artificial intelligence for retinopathy of prematurity screening. Pediatrics. 2021;147(3):e2020016618. doi: 10.1542/peds.2020-016618
  • Morrison SL, Dukhovny D, Chan RVP, et al. Cost-effectiveness of artificial intelligence-based retinopathy of prematurity screening. JAMA Ophthalmol. 2022;140(4):401–409.
  • Ren X, Feng W, Ran R, et al. Artificial intelligence to distinguish retinal vein occlusion patients using color fundus photographs. Eye (Lond). 2023;37(10):2026–32. doi: 10.1038/s41433-022-02239-4
  • Irgat SG, F Ö. Afibercept treatment for macular edema with and without serous retinal detachment due to branch retinal vein occlusion. Arq Bras Oftalmol. 2023; 86(1):60–67.10.5935/0004-2749.20230019
  • Chen Q, Yu WH, Lin S, et al. Artificial intelligence can assist with diagnosing retinal vein occlusion. Int J Ophthalmol. 2021;14(12):1895–1902.
  • Nagasato D, Tabuchi H, Ohsugi H, et al. Deep neural network-based method for detecting central retinal vein occlusion using ultrawide-field fundus ophthalmoscopy. Journal Of Ophthalmology. 2018;2018:1–6. doi: 10.1155/2018/1875431
  • Anitha J, Vijila CK, Selvakumar AI, et al. Automated multi-level pathology identification techniques for abnormal retinal images using artificial neural networks. Br J Ophthalmol. 2012;96(2):220–23. doi: 10.1136/bjophthalmol-2011-300032
  • Abitbol E, Miere A, Excoffier JB, et al. Deep learning-based classification of retinal vascular diseases using ultra-widefield colour fundus photographs. BMJ Open Ophthalmol. 2022;7(1):e000924. doi: 10.1136/bmjophth-2021-000924
  • Xu W, Yan Z, Chen N, et al. Development and application of an intelligent diagnosis system for retinal vein occlusion based on deep learning. Dis Markers. 2022;2022:4988256. doi: 10.1155/2022/4988256
  • Tang Z, Zhang X, Yang G, et al. Automated segmentation of retinal non-perfusion area in fluorescein angiography in retinal vein occlusion using convolutional neural networks. Med Phys. 2021;48(2):648–658.
  • Vogl WD, Waldstein SM, Gerendas BS, et al. Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal mixed effects Model of imaging and clinical data. Invest Ophthalmol Vis Sci. 2017;58(10):4173–81. doi: 10.1167/iovs.17-21878
  • Kumari S, Venkatesh P, Tandon N, et al. Selfie fundus imaging for diabetic retinopathy screening. Eye (Lond). 2022;36(10):1988–93. doi: 10.1038/s41433-021-01804-7
  • Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–164. doi: 10.1038/s41551-018-0195-0
  • Paul F, Calabresi PA, Barkhof F, et al. Optical coherence tomography in multiple sclerosis: a 3-year prospective multicenter study. Ann Clin Transl Neurol. 2021;8(12):2235–51. doi: 10.1002/acn3.51473
  • Nezu N, Usui Y, Saito A, et al. Machine learning approach for intraocular disease prediction based on aqueous humor immune Mediator profiles. Ophthalmol. 2021;128(8):1197–1208. doi: 10.1016/j.ophtha.2021.01.019
  • Aronson JK. Artificial intelligence in pharmacovigilance: an introduction to terms, concepts, applications, and limitations. Drug Saf. 2022;45(5):407–18. doi: 10.1007/s40264-022-01156-5
  • Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018 Apr 3;319(13):1317–8.
  • Galante N, Cotroneo R, Furci D, et al. Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. Int J Legal Med. 2023 Mar;137(2):445–458.
  • Kim DW, Jang HY, Kim KW, et al. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20(3):405–410. doi: 10.3348/kjr.2019.0025
  • Tabuchi H. Understanding required to consider AI applications to the field of ophthalmology. Taiwan J Ophthalmol. 2022;12(2):123–29. doi: 10.4103/tjo.tjo_8_22

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.