31
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Progressive damage analysis of embedment of metal washer into timber

&
Received 20 Feb 2024, Accepted 16 Apr 2024, Published online: 01 May 2024

References

  • AIJ, 2010. Fundamental theory of timber engineering. Minato-ku, Tokyo: AIJ.
  • ASTM, 2021. ASTM D5379. West Conshohocken, PA: ASTM. (in Japanese).
  • Awaludin, A., et al., 2012. A finite element analysis of bearing resistance of timber loaded through a steel plate. Civil Engineering Dimension, 14 (1), 1–6. doi:10.9744/ced.14.1.1-6.
  • Berard, P., et al., 2011. Modeling of a cylindrical laminated Veneer Lumber I: mechanical properties of Hinoki (Chamaecyparis Obtusa) and the reliability of a nonlinear finite elements model of a four-point bending test. Journal of Wood Science, 57, 100–106. doi:10.1007/s10086-010-1150-1.
  • Blass, H.J., and Görlacher, R., 2004. Compression perpendicular to the grain. Proceedings of the 8th World Conference of Timber Engineering, 2, 435–440.
  • Frühwald Hansson, E., 2011. Analysis of structural failures in timber structures: typical causes for failure and failure modes. Engineering Structures, 33 (11), 2978–2982. doi:10.1016/j.engstruct.2011.02.045.
  • González, M.J., and García Navarro, J., 2006. Assessment of the decrease of Co2 emissions in the construction field through the selection of materials: practical case study of three houses of low environmental impact. Building and Environment, 41 (7), 902–909. doi:10.1016/j.buildenv.2005.04.006.
  • Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193 (1033), 281–297. doi:10.1098/rspa.1948.0045.
  • Hoffman, O., 1967. The brittle strength of orthotropic materials. Journal of Composite Materials, 1 (2), 200–206. doi:10.1177/002199836700100210.
  • Inose, O., and Shibuya, M., 1975. On the strength properties of sugi-wood (cryptomeria japonica D. Don). Bulletin of the Ehime University Forest, 12, 77–88. in Japanese.
  • Iraola, B., et al., 2021. A geometrically defined stiffness contact for finite element models of wood joints. Engineering Structures, 235, 112062. doi:10.1016/j.engstruct.2021.112062.
  • JAS, 2019. Jas1083. Chiyoda-ku, Tokyo: Ministry of Agriculture, Forestry and Fisheries.
  • Jeong, G.Y., Zink-Sharp, A., and Hindman, D.P., 2009. Tensile properties of earlywood and latewood from loblolly pine (pinus taeda) using digital image correlation. Wood and Fiber Science, 41 (1), 51–63.
  • JIS, 2020. Jis Z2101. Minato-ku, Tokyo: JSA.
  • Komori, K., 2017. Predicting ductile fracture in ferrous materials during tensile tests using an ellipsoidal void model. Mechanics of Materials, 113, 24–43. doi:10.1016/j.mechmat.2017.07.010.
  • Leijten, A.J.M., Larsen, H.J., and Van der Put, T.A.C.M., 2010. Structural design for compression strength perpendicular to the grain of timber beams. Construction and Building Materials, 24 (3), 252–257. doi:10.1016/j.conbuildmat.2009.08.042.
  • Mahmudah, A., Kiswanto, G., and Priadi, D., 2017. Fabrication of punch and die of micro-blanking tool. IOP Conference Series: Materials Science and Engineering, 215 (1), 012040. doi:10.1088/1757-899X/215/1/012040.
  • Matsubara, D., et al., 2016. Embedment of metal washers into timber members of bolted timber joints I application of the theory of a beam on an elastic foundation. Mokuzai Gakkaishi, 62 (4), 119–132. doi:10.2488/jwrs.62.119. in Japanese.
  • Mithraratne, N., and Vale, B., 2004. Life cycle analysis model for New Zealand houses. Building and Environment, 39 (4), 483–492. doi:10.1016/j.buildenv.2003.09.008.
  • Mitsui, S., et al., 2010. Finite element analysis of wooden behavior of compressive strain inclined to the grain (part 1): outline of the present approach and some numerical analyses of uniform partial compression test. Journal of Structural Engineering, 56, 359–369. (in Japanese).
  • Mitsui, S., et al., 2014. Finite element analysis of wooden behavior of compressive strain inclined to the grain (part 2): yield criteria and strain hardening rule using the non-dimensional stresses for orthotropic material. Journal of Structural and Construction Engineering (Transactions of AIJ), 79 (700), 741–749. doi:10.3130/aijs.79.741. in Japanese.
  • Mitsui, S., et al., 2021. Finite element analysis of wooden behavior of compressive strain inclined to the grain (part 4): numerical analysis of deformation behavior at Clt-glulam joints with consideration on inclination of annual rings. Journal of Structural and Construction Engineering (Transactions of AIJ), 86 (780), 225–234. in Japanese.
  • Murata, K., and Tanahashi, H., 2010. Measurement of Young’s modulus and poisson’s ratio of wood specimens in compression test. Journal of the Society of Materials Science, Japan, 59 (4), 285–290. doi:10.2472/jsms.59.285. in Japanese.
  • Oller, S., Car, E., and Lubliner, J., 2003. Definition of a general implicit orthotropic yield criterion. Computer Methods in Applied Mechanics and Engineering, 192 (7–8), 895–912. doi:10.1016/S0045-7825(02)00605-9.
  • Ottenhaus, L.-M., et al., 2021. Designing timber connections for ductility – a review and discussion. Construction and Building Materials, 304, 124621. doi:10.1016/j.conbuildmat.2021.124621.
  • Sawada, M., 1963. Elasticity and strength of wood, as an orthotropic materials. Journal of the Society of Materials Science, 12 (121), 749–753. doi:10.2472/jsms.12.749. in Japanese.
  • Sirumbal-Zapata, L.F., Málaga-Chuquitaype, C., and Elghazouli, A.Y., 2018. A three-dimensional plasticity-damage constitutive model for timber under cyclic loads. Computers & Structures, 195, 47–63. doi:10.1016/j.compstruc.2017.09.010.
  • Sirumbal-Zapata, L.F., Málaga-Chuquitaype, C., and Elghazouli, A.Y., 2019. Experimental assessment and damage modelling of hybrid timber beam-to-steel column connections under cyclic loads. Engineering Structures, 200 , 109682. doi:10.1016/j.engstruct.2019.109682.
  • Stepinac, M., et al., 2020. Seismic design of timber buildings: highlighted challenges and future trends. Applied Sciences, 10 (4), 1380. doi:10.3390/app10041380.
  • Suzuki, M., Oka, T., and Okada, K., 1995. The estimation of energy consumption and Co2 emission due to housing construction in Japan. Energy and Buildings, 22 (2), 165–169. doi:10.1016/0378-7788(95)00914-J.
  • Tanahashi, H., and Suzuki, Y., 2020. Review on the mechanical models and formulations of embedment of traditional timber joints in Japan. Japan Architectural Review, 3 (2), 148–164. doi:10.1002/2475-8876.12137.
  • Teranishi, M., et al., 2021. Nonlinear finite-element analysis of embedment behavior of metal washer in bolted timber joints. Journal of Wood Science, 67 (1), 1–9. doi:10.1186/s10086-021-01973-9.
  • Van der Put, T.A.C.M., 2008. Derivation of the bearing strength perpendicular to the grain of locally loaded timber blocks. Holz als Roh-und Werkstoff: European Journal of Wood and Wood Products, 66 (6), 409–417. doi:10.1007/s00107-008-0258-0.
  • Xavier, J.C., et al., 2004. A comparison between the iosipescu and off-axis shear test methods for the characterization of pinus pinaster Ait. Composites Part A: Applied Science and Manufacturing, 35 (7–8), 827–840. doi:10.1016/j.compositesa.2004.01.013.
  • Xavier, J.C., et al., 2012. Stereovision measurements on evaluating the modulus of elasticity of wood by compression tests parallel to the grain. Construction and Building Materials, 26 (1), 207–215. doi:10.1016/j.conbuildmat.2011.06.012.
  • Yue, K., et al., 2022. Mechanical properties of douglas fir wood at elevated temperatures under nitrogen conditions. Journal of Materials in Civil Engineering, 34 (2), 04021434. doi:10.1061/(ASCE)MT.1943-5533.0004072.
  • Zhang, H., et al., 2012. Springback characteristics in U-channel forming of tailor rolled blank. Acta Metallurgica Sinica (English Letters), 25 (3), 207–213. doi:10.1016/S1006-706X(17)30118-8.
  • Zink, A.G., Davidson, R.W., and Hanna, R.B., 1995. Strain measurement in wood using a digital image correlation technique. Wood and Fiber Science, 27 (4), 346–359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.