26
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Determine the location of acoustic emission source on wood surface by using a wavelet-energy attenuation method

, , , , , & show all
Received 31 Jan 2024, Accepted 16 Apr 2024, Published online: 01 May 2024

References

  • Baensch, F., et al., 2015. Damage evolution in wood: synchrotron radiation micro-computed tomography (SRμCT) as a complementary tool for interpreting acoustic emission (AE) behavior. Holzforschung, 69 (8), 1015–1025. doi:10.1515/hf-2014-0152.
  • Campbell, L., et al., 2018. The use of acoustic emission to detect fines for wood-based composites, part one: experimental setup for use on particleboard. Bioresources, 13(4), 8738–8750. doi:10.15376/biores.13.4.8738-8750.
  • Ding, R., et al., 2021. Straight line location algorithm of wood acoustic emission source based on singular spectrum analysis and signal correlation analysis methods. Journal of Northwest Forestry University, 36 (5), 173–178. doi:10.3969/j.issn.1001-7461.2021.05.26.
  • Ding, R., et al., 2022. Propagation characteristics and energy attenuation law of surface shear waves and internal longitudinal waves in Mongolian Scotch pine sawn timber based on acoustic emission. Chinese Journal of Wood Science and Technology, 36 (01), 36–42.
  • Fang, S., et al., 2022. Study on the time-frequency characteristics and propagation law of acoustic emission longitudinal waves in wood grain direction. doi:10.37763/wr.1336-4561/67.4.582597
  • Feng, R., 1999. Ultrasound manual. Nanjing: Nanjing University Press.
  • Gong, B., et al., 2006. A new method of energy location for acoustic emission source. Technical Acoustics, 25 (2), 107–109.
  • Gong, Y., 2014. Study on acoustic emission characteristics of metal eorrosion [Master, Northeast Petroleum University].
  • Lai, X., et al., 2006. Application of support sector machine in test on acoustic emission location in rock crack and destabilization. Metal Mine, 12, 61–63,82. doi:10.3321/j.issn:1001-1250.2006.12.018
  • Li, Y., et al., 2018. Acoustic emission signal source localization on plywood surface with cross-correlation method. Journal of Wood Science, 64 (2), 78–84. doi:10.1007/s10086-017-1672-x.
  • Li, X., et al., 2020. Linear positioning algorithm improvement of wood acoustic emission source based on wavelet and signal correlation analysis methods. Journal of Forestry Engineering, 5 (3), 138–143. doi:10.13360/j.issn.2096-1359.201907045.
  • Li, M., et al., 2021. Study of acoustic emission propagation characteristics and energy attenuation of surface transverse wave and internal longitudinal wave of wood. Wood Science and Technology, 55, 1619–1637. doi:10.1007/s00226-021-01329-y.
  • Mei, Y., Fukai, S., and Shaopeng, D., 2018. Acoustic emission source location for composite plate based on empirical wavelet transform. Journal of Beijing University of Aeronautics and Astronautics, 44(7), 1395–1401. doi:10.13700/j.bh.1001-5965.2017.0527.
  • Qin, G., et al., 2022. Study on the dispersion characteristics of wood acoustic emission signal based on wavelet decomposition. Wood Research, 67 (6), 966–978. doi:10.37763/wr.1336-4561/67.6.966978.
  • Satour, A., et al., 2013. Acoustic emission signal denoising to improve damage analysis in glass fibre-reinforced composites. Nondestructive Testing And Evaluation, 29 (1), 65–79. doi:10.1080/10589759.2013.854782.
  • Shao, Z., et al., 2009. Acoustic emission characteristics of damage and fracture process of wood and felicity effect. Scientia silvae sinicae, 45 (2), 86–91. doi:10.3321/j.issn:1001-7488.2009.02.016.
  • Shen, K., et al., 2015a. Acoustic emission signal source localization in wood surface with triangle positioning method. Journal of Northeast Forestry University, 43 (04), 77–81 + 112. doi:10.13759/j.cnki.dlxb.20150116.029
  • Shen, K., et al., 2015b. Acoustic emission signal wavelet disjunction in wood damage fracture process. Journal of Henan University of Science and Technology: Natural Science, 36 (3), 33–37. doi:10.15926/j.cnki.issn1672-6871.2015.03.017.
  • Vun, R.Y., dehoop, C., and Beall, F.C., 2005. Monitoring critical defects of creep rupture in oriented strandboard using acoustic emission: incorporation of EN300 standard. Wood Science and Technology, 39 (3), 199–214. doi:10.1007/s00226-004-0278-9.
  • Wang, X.H., et al., 2008. Source location of cracks of turbine blades based on wavelet neural network. Journal of Shanghai Jiaotong University, 47 (8), 1301–1304,1309. doi:10.1016/S1872-2075(08)60034-5.
  • Wang, X.H., et al., 2009. Damage localization in hydraulic turbine blades using kernel-independent component analysis and support vector machines. Journal of the Mechanical Engineering Science, 223 (2), 525–529.
  • Wang, G., et al., 2010. A study of time-and spatial-attenuation of stress wave amplitude in rock mass. Rock and Soil Mechanics, 31 (11), 3487–3492. doi:10.16285/j.rsm.2010.11.023.
  • Wang, S., 2013. Metal corrosion acoustic emission monitoring and the research on signal analysis method. Northeast Petroleum University.
  • Wang, M., et al., 2020. Effect of wood surface crack on acoustic emission signal propagation characteristics. Journal of Northeast Forestry University, 48 (10), 82–88. doi:10.13759/j.cnki.dlxb.2020.10.015.
  • Wang, M., et al., 2021a. Generation and characteristics of simulated acoustic emission source of wood. Journal of Northeast Forestry University, 49 (06), 96–101 +118. doi:10.13759/j.cnki.dlxb.2021.06.019.
  • Wang, M., et al., 2021b. Study on lamb wave propagation characteristics of wood sheet along texture direction. Wood Research, 66 (1), 141–152. doi:10.37763/wr.1336-4561/66.1.141152.
  • Wang, X., and Xiang, J., 2014. Overview of methods of acoustic emission source location. Technological Development of Enterprise, 33 (25), 58–60. doi:10.14165/j.cnki.hunansci.2014.25.051.
  • Wu, Y., et al., 2014. Acoustic emission characteristics and felicity effect of wood fracture perpendicular to the grain. Journal of Tropical Forest Science, 26 (4), 522–531. doi:10.1115/1.3453104.
  • Xu, N., et al., 2023a. Research on the detection of the hole in wood based on acoustic emission frequency sweeping. Construction and Building Materials, 400, 132761. doi:10.1016/j.conbuildmat.2023.132761.
  • Xu, N., et al., 2023b. Study the effects of ferrous materials inside wood on the propagation characteristics of acoustic emission signals. Wood Material Science & Engineering, 18 (5), 1650–1662. doi:10.1080/17480272.2023.2171808.
  • Yuan, Z., Ma, Y., and He, Z., 1985. Acoustic emission technology and its application. Beijing: China Machine Press.
  • Zhao, J.H., et al., 2008. Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement. Optics & Laser Technology, 40 (6), 874–880.
  • Zhao, Y., et al., 2022. Influence of boundary conditions on acoustic emission propagation characteristics of Zelkova schneideriana. Journal of Wood Science, 68 (1), 62. doi:10.1186/s10086-022-02070-1.
  • Zhou, X., et al., 2015. Diffusion denoising model based on the wavelet and biharmonic equation. Acta Physica Sinica, 64(6), 064203-1–064203-9.
  • Zhou, H., Xu, X., and Zhang, F., 2018. Research on acoustic emission source location based on wavelet transform and cross correlation. Modern Manufacturing Technology and Equipment, 01, 53–54. doi:10.16107/j.cnki.mmte.2018.0024.
  • Zhu, X., 2011. New location method for acoustic emission source by energy. China Measurement & Test, 37 (1), 18–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.