308
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the impact of Industrial Internet of Things (IIoT) - mining sector perspectives

ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Received 07 Dec 2023, Accepted 18 Apr 2024, Published online: 07 May 2024

References

  • I. Lee and K. Lee, The Internet of Things (IoT): Applications, investments, and challenges for enterprises, Business Horizons. 58 (4) (2015), pp. 431–440. doi:10.1016/j.bushor.2015.03.008.
  • J. Zhang, Exploration on coal mining-induced rockburst prediction using internet of things and deep neural network, J. Supercomput. 78 (12) (2022), pp. 13988–14008. doi:10.1007/s11227-022-04424-4.
  • Gartner, 2014. Gartner says the internet of things will transform the data center. http://www.gartner.com/newsroom/id/2684616
  • A. Aziz, O. Schelén, and U. Bodin, A study on industrial IoT for the mining industry: Synthesized architecture and open research directions, IoT 1 (2) (2020), pp. 529–550. doi:10.3390/iot1020029.
  • M. Moghaddam, M.N. Cadavid, C.R. Kenley, and A.V. Deshmukh, Reference architectures for smart manufacturing: A critical review, J. Manuf. Syst. 49 (2018), pp. 215–225. doi:10.1016/j.jmsy.2018.10.006.
  • R. Qi, T. Liu, Q. Jia, L. Sun, and J. Liu, Simulating the sustainable effect of green mining construction policies on coal mining industry of China, J. Cleaner Prod. 226 (2019), pp. 392–406. doi:10.1016/j.jclepro.2019.04.028.
  • O. Dayo-Olupona, B. Genc, and M. Onifade, Technology adoption in mining: A multi-criteria method to select emerging technology in surface mines, Resour. Policy 69 (2020), pp. 101879. doi:10.1016/j.resourpol.2020.101879.
  • A. Jimeno-Morenilla, P. Azariadis, R. Molina-Carmona, S. Kyratzi, and V. Moulianitis, Technology enablers for the implementation of industry 4.0 to traditional manufacturing sectors: A review, Comput. Ind. 125 (2021), pp. 103390. doi:10.1016/j.compind.2020.103390.
  • X. Ge, S. Su, H. Yu, G. Chen, and X. Lu, Smart mine construction based on knowledge engineering and internet of things, Int. J. Performability Eng. 14 (2018), pp. 1060–1068. doi:10.23940/ijpe.18.05.p25.10601068.
  • ] P. Lyu, M. He, X. Chen, Y. Bao, Development and prospect of wisdom mine, Ind. Mine Autom. 44, 2018 (2018), pp. 84–88. doi:10.13272/j.issn.1671-251x.17346.
  • L. Ericsson, More than 50 billion connected devices, White Pap 14 (2011), pp. 124.
  • A. Rymaszewska, P. Helo, and A. Gunasekaran, IoT powered servitization of manufacturing - an exploratory case study, Int. J. Prod. Econ. 192 (2017), pp. 92–105. doi:10.1016/j.ijpe.2017.02.016.
  • GDMIN-TR-S014, 2021. https://www.globaldata.com/store/report/iot-in-mining-theme-analysis/
  • R. Schmidt, M. Möhring, R.C. Härting, C. Reichstein, P. Neumaier, and P. Jozinović, 2015. Industry 4.0-potentials for creating smart products: Empirical research results. In International Conference on Business Information Systems; Springer: Berlin, Germany, pp.16–27.
  • Q. Li, Q. Tang, I. Chan, H. Wei, Y. Pu, H. Jiang, J. Li, and J. Zhou, Smart manufacturing standardization: Architectures, reference models and standards framework, Comput. Ind. 101 (2018), pp. 91–106. doi:10.1016/j.compind.2018.06.005.
  • M. Blanchet, T. Rinn, G. Von Thaden, and G. De Thieulloy, 2014. Industry 4.0: The New Industrial Revolution-How Europe Will Succeed. Hg. V. Roland Berger Strategy Consultants GmbH. München. Abgerufen Am 11.05. 2014.
  • H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, The Industrial Internet of Things (IIoT): An analysis framework, Comput. Ind. 101 (2018), pp. 1–12. doi:10.1016/j.compind.2018.04.015.
  • T. Borangiu, D. Trentesaux, A. Thomas, P. Leit˜ao, and J. Barata, Digital transformation of manufacturing through cloud services and resource virtualization, Comput. Ind. 108 (2019), pp. 150–162. doi:10.1016/j.compind.2019.01.006.
  • H. Jaidka, N. Sharma, and R. Singh Evolution of IoT to IIoT: Applications & challenges. 2020. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3603739.
  • M.D. González-Zamar, E. Abad-Segura, E. Vázquez-Cano, and E. López-Meneses, IoT technology applications-based smart cities: Research analysis, Electronics 9 (8) (2020), pp. 1246. doi:10.3390/electronics9081246.
  • L. Barnewold and B.G. Lottermoser, Identification of digital technologies and digitalisation trends in the mining industry, Int. J. Min. Sci. Technol. 30 (6) (2020), pp. 747–757. doi:10.1016/j.ijmst.2020.07.003.
  • M. Onifade, J.A. Adebisi, A.P. Shivute, and B. Genc, Challenges and applications of digital technology in the mineral industry, Resour. Policy 85 (2023a), pp. 103978. doi:10.1016/j.resourpol.2023.103978.
  • S. Husain, A. Prasad, A. Kunz, A. Papageorgiou, and J. Song, Song, J. Recent trends in standards related to the internet of things and machine-to-machine communications, Scope. J. Info. Comm. Converg. Eng. 12 (4) (2014), pp. 228–236. doi:10.6109/jicce.2014.12.4.228.
  • A. Deol, K. Figueredo, S.W. Lin, B. Murphy, D. Seed, and J. Yin, Adv. Ind. Internet Things: An Ind. Internet Consortium And oneM2m Joint Whitepaper. (2019), pp. 1–25.
  • C. Zhou, N. Damiano, B. Whisner, and M. Reyes, Industrial internet of things: (IIoT) applications in underground coal mines, Min. Eng. 69 (12) (2017), pp. 50–56. doi:10.19150/me.7919.
  • D. Kent and D. Eisner, 2015. What the internet of things means to mining. In: Proceedings of 3rd international future mining conference. Sydney: The Australasian Institute of Mining and Metallurgy. pp. 65–69.
  • M.H. Ur Rehman, I. Yaqoob, K. Salah, M. Imran, P.P. Jayaraman, and C. Perera, The role of big data analytics in industrial internet of things, Future. Gener. Comput. Syst. 99 (2019), pp. 247–259. doi:10.1016/j.future.2019.04.020.
  • M. Aazam, S. Zeadally, and K.A. Harras, Deploying fog computing in industrial internet of things and industry 4.0, IEEE Trans. Ind. Informat. 14 (10) (2018), pp. 4674–4682. doi:10.1109/TII.2018.2855198.
  • E. Sun, X. Zhang, and Z. Li, The internet of things (IOT) and cloud computing (CC) based tailings dam monitoring and pre-alarm system in mines, Saf. Sci. 50 (4) (2012), pp. 811–815. doi:10.1016/j.ssci.2011.08.028.
  • V. Lesi, Z. Jakovljevic, and M. Pajic, 2019. Reliable industrial IoT-based distributed automation. In Proceedings of the International Conference on Internet of Things Design and Implementation, Montreal, QC, Canada15-18 April 2019; pp. 94–105.
  • M. Sishi and A. Telukdarie, Implementation of industry 4.0 technologies in the mining industry-a case study, Int. J. Min. Eng. 11 (1) (2020), pp. 1–22. doi:10.1504/IJMME.2020.105852.
  • O. Dayo-Olupona, B. Genc, T. Celik, and S. Bada, Adoptable approaches to predictive maintenance in mining industry: An overview, Resour. Policy 86 (2023), pp. 104291. doi:10.1016/j.resourpol.2023.104291.
  • D. Kiel, J.M. Müller, C. Arnold, and K.I. Voigt, Sustainable industrial value creation: Benefits and challenges of industry 4.0, Int. J. Innovation Manage. 21 (8) (2017), pp. 1740015. doi:10.1142/S1363919617400151.
  • B. Jo and R.M.A. Khan, An internet of things system for underground mine air quality pollutant prediction based on azure machine learning, Sensors 18 (4) (2018), pp. 930. doi:10.3390/s18040930.
  • G. Stanway, P. Mahoney, D. Andrew, and C. Griebel, 2015. Understanding the state of innovation in the iron ore industry. In: Proceedings of the iron ore conference 2015. The Australasian Institute of Mining and Metallurgy, Perth. pp. 631–645.
  • B. Boudreau-Trudel, S. Nadeau, and K. Zaras, Innovative mining equipment: Key factors for successful implementation, Am J. Indus. Bus Manage 5 (4) (2015), pp. 161–171. doi:10.4236/ajibm.2015.54018.
  • S. van Duin, L. Meers, and G. Gibson, 2013. Hard automation trends in Australian underground coal mines. In: Proceedings of the 30th international symposium on automation and robotics in construction and mining, ISARC 2013. Montreal, QC; 2013.
  • D. Groenveld and M. Rozou, 2016. Advanced process control for grinding circuits. Proceedings of the 28th International Mineral Processing Congress, IMPC 2016. Canadian Institute of Mining, Metallurgy and Petroleum, Quebec City; 2016.
  • A. Atkins, L. Zhang, and H. Yu, Application of RFID and mobile technology in tracking of equipment for maintenance in the mining industry, in The Australasian Institute of Mining and Metallurgy, Wollongong, Australia, University of Wollongong, 2010, pp. 350–358.
  • M. McNinch, D. Parks, R. Jacksha, and A. Miller, Leveraging IIoT to improve machine safety in the mining industry, Min. Metall. Explor. 36 (4) (2019), pp. 675–681. doi:10.1007/s42461-019-0067-5.
  • Z.M. Qian, Y.B. Yuan, S.S. Zhang, and G.F. Ren, Design of online mine safety detection system based on internet of things, Int. J. Onl. Eng. 12 (12) (2016), pp. 60–62. doi:10.3991/ijoe.v12i12.6449.
  • M. Onifade, K.O. Said, and A.P. Shivute, Safe mining operations through technological advancement, Process Saf. Environ. Prot. 175 (2023b), pp. 251–258. doi:10.1016/j.psep.2023.05.052.
  • K.O. Said, M. Onifade, A.P. Shivute, and J.A. Adebisi, Enhancement of efficient coal fragmentation through technological advancement, Int. J. Min. Eng. 14 (1) (2023), pp. 69–94. doi:10.1504/IJMME.2023.131614.
  • J.M. Akande, M. Onifade, and A.E. Aladejare, Determination of airflow distributions in Okaba underground coal mine, J. Min. World Express 2 (2013), pp. 40–44.
  • W.P. Rogers, M.M. Kahraman, F.A. Drews, K. Powell, J.M. Haight, Y. Wang, K. Baxla, and M. Sobalkar, Automation in the mining industry: Review of technology, systems, human factors, and political risk, Min. Metall. Explor. 36 (4) (2019), pp. 607–631. doi:10.1007/s42461-019-0094-2.
  • T. Sălăgean, T. Rusu, D. Onose, R. Farcaș, B. Duda, and P. Sestraș, The use of laser scanning technology in land monitoring of mining areas, Carpath. J. Earth Env. 11 (2016), pp. 565–573.
  • S. Raval, B.P. Banerjee, S.K. Singh, and I. Canbulat. A preliminary investigation of mobile mapping technology for underground mining. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, July, Yokohama, Japan, IEEE, 2019, pp. 6071–6074.
  • A. Ellmann, K. Kütimets, S. Varbla, E. Väli, and S. Kanter, Advancements in underground mine surveys by using SLAM-enabled handheld laser scanners, Surv. Rev. 54 (385) (2022), pp. 363–374. doi:10.1080/00396265.2021.1944545.
  • F. Molaei, E. Rahimi, H. Siavoshi, S.G. Afrouz, and V. Tenorio, A comprehensive review on internet of things (IoT) and its implications in the mining industry, Am. J. Eng. And Appl. Sci. 13 (3) (2020), pp. 499–515. doi:10.3844/ajeassp.2020.499.515.
  • A. Singh, D. Kumar, and J. Hötzel, IoT based information and communication system for enhancing underground mines safety and productivity: Genesis, taxonomy and open issues, Ad Hoc Networks 78 (2018), pp. 115–129. doi:10.1016/j.adhoc.2018.06.008.
  • J. Kwiri, 2018. Concept Development of a Smart Rock Engineering System for Real-Time Decision-Making and Risk Minimization in Deep Level Hard Rock Mines: A Digital Mining Approach. MSc Thesis. University of the Witwatersrand, Johannesburg, South Africa.
  • S.S. Bhattacharyya and Y. Shah, Emerging technologies in Indian mining industry: An exploratory empirical investigation regarding the adoption challenges, J. Sci. Technol. Policy Manage. 13 (2) (2022), pp. 358–381. doi:10.1108/JSTPM-03-2021-0048.
  • L.Q. Nguyen, M.T. Dang, L.K. Bui, Q.B. Ngoc, and T.X. Tran, 2022, October. Application of unmanned aerial vehicles for surveying and mapping in mines: A review. In International Conference on Geo-Spatial Technologies and Earth Resources (pp.1–22). Springer International Publishing, Cham.
  • M. Mardonova and Y. Choi, Toward open-source hardware and software for the mining industry: A case study of low-cost environmental monitoring system for non-metallic underground mines, Min. Metall. Explor. 36 (4) (2019), pp. 657–674. doi:10.1007/s42461-019-0093-3.
  • E.A. Shammar and A.T. Zahary, The Internet of Things (IoT): A survey of techniques, operating systems, and trends, Libr. Hi Tech 38 (1) (2020), pp. 5–66. doi:10.1108/LHT-12-2018-0200.
  • M. Cudjoe and F.T. Cawood, The tracking of metal content on a surface mine: A digital mining technology approach, Resour. Policy 76 (2022), pp. 102571. doi:10.1016/j.resourpol.2022.102571.
  • X.T. Feng, J. Liu, B. Chen, Y. Xiao, G. Feng, and F. Zhang, Monitoring, warning, and control of rockburst in deep metal mines, Engineering 3 (4) (2017), pp. 538–545. doi:10.1016/J.ENG.2017.04.013.
  • Y. Liu, W. Li, J. He, S. Liu, L. Cai, and G. Cheng, Application of brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining, Int. J. Rock Mech. Min. Sci. 106 (2018), pp. 133–143. doi:10.1016/j.ijrmms.2018.04.030.
  • A.V. Dyskin, H. Basarir, J. Doherty, M. Elchalakani, G.R. Joldes, A. Karrech, B. Lehane, K. Miller, E. Pasternak, I. Shufrin, and A. Wittek, Computational monitoring in real time: Review of methods and applications, Geomech. Geophys. Geo. Energy. Ge. Resour. 4 (3) (2018), pp. 235–271. doi:10.1007/s40948-018-0086-6.
  • M. He, Q. Wang, and Q. Wu, Innovation and future of mining rock mechanics, J. Rock Mech. Geotech. Eng. 13 (1) (2021), pp. 1–21. doi:10.1016/j.jrmge.2020.11.005.
  • P.G. Ranjith, J. Zhao, M. Ju, R.V. De Silva, T.D. Rathnaweera, and A.K. Bandara, Opportunities and challenges in deep mining: A brief review, Engineering 3 (4) (2017), pp. 546–551. doi:10.1016/J.ENG.2017.04.024.
  • C. Tang, J. Wang, and J. Zhang, Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project, J. Rock Mech. Geotech. Eng. 2 (3) (2010), pp. 193–208. doi:10.3724/SP.J.1235.2010.00193.
  • U. Raza and A. Salam, A survey on subsurface signal propagation, Smart Cities 3 (4) (2020), pp. 1513–1561. doi:10.3390/smartcities3040072.
  • S. Li, S. Li, Q. Zhang, Y. Xue, B. Liu, M. Su, Z. Wang, and S. Wang, Predicting geological hazards during tunnel construction, J. Rock Mech. Geotech. Eng. 2 (3) (2010), pp. 232–242. doi:10.3724/SP.J.1235.2010.00232.
  • S. Hou, Y. Liu, and Q. Yang, Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning, J. Rock Mech. Geotech. Eng. 14 (1) (2022), pp. 123–143. doi:10.1016/j.jrmge.2021.05.004.
  • M. Thibaud, H. Chi, W. Zhou, and S. Piramuthu, Internet of things (IoT) in high-risk environment, health and safety (EHS) industries: A comprehensive review, Decis. Support Syst. 108 (2018), pp. 79–95. doi:10.1016/j.dss.2018.02.005.
  • T. Chikande, 2022. Application of Fourth Industrial Revolution Technologies to Ventilation Design and Environmental Monitoring Criteria for Platinum Mining in Zimbabwe Doctoral dissertation, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg.
  • J. Pramanik, A.K. Samal, S.K. Pani, and C. Chakraborty, Elementary framework for an IoT based diverse ambient air quality monitoring system, Multimedia Tools Appl. 81 (26) (2022), pp. 36983–37005. doi:10.1007/s11042-021-11285-1.
  • L. Muduli, D.P. Mishra, and P.K. Jana, Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review, J. Netw. Comput. Appl. 106 (2018), pp. 48–67. doi:10.1016/j.jnca.2017.12.022.
  • A. Yasin, J. Delaney, C.T. Cheng, and T.Y. Pang, The design and implementation of an IoT sensor-based indoor air quality monitoring system using off-the-shelf devices, Appl. Sci. 12 (19) (2022), pp. 9450. doi:10.3390/app12199450.
  • J.D. Stinnette, Establishing Total Airflow Requirements for Underground Metal/non-Metal Mines Based on the Diesel Equipment Fleet, Queen’s University, Canada, 2013.
  • K. Wallace, B. Prosser, and J.D. Stinnette, The practice of mine ventilation engineering, Int. J. Min. Sci. Technol. 25 (2) (2015), pp. 165–169. doi:10.1016/j.ijmst.2015.02.001.
  • R.H. Grau III, S.B. Robertson, T.P. Mucho, F. Garcia, and A.C. Smith, NIOSH ventilation research addressing diesel emissions and other air quality issues in nonmetal mines, 2022.
  • S.K. Singh, B.P. Banerjee, and S. Raval, A review of laser scanning for geological and geotechnical applications in underground mining, Int. J. Min. Sci. Technol. 33 (2) (2022), pp. 133–154. doi:10.1016/j.ijmst.2022.09.022.
  • H. Zhang, B. Li, M. Karimi, S. Saydam, and M. Hassan, Recent advancements in IoT implementation for environmental, safety, and production monitoring in underground mines, IEEE Internet Things J. 10 (16) (2023), pp. 14507–14526. doi:10.1109/JIOT.2023.3267828.
  • S. Sadeghi, N. Soltanmohammadlou, and F. Nasirzadeh, Applications of wireless sensor networks to improve occupational safety and health in underground mines, J. Safety. Res. 83 (2022), pp. 8–25. doi:10.1016/j.jsr.2022.07.016.
  • C. Cacciuttolo, V. Guzmán, P. Catriñir, E. Atencio, S. Komarizadehasl, and J.A. Lozano-Galant, Low-cost sensors technologies for monitoring sustainability and safety issues in mining activities: Advances, gaps, and future directions in the digitalization for smart mining, Sensors 23 (15) (2023), pp. 6846. doi:10.3390/s23156846.
  • Y. Gao, Y. Ai, B. Tian, L. Chen, J. Wang, D. Cao, and F.Y. Wang, Parallel end-to-end autonomous mining: An IoT-oriented approach, IEEE Internet Things J. 7 (2) (2019), pp. 1011–1023. doi:10.1109/JIOT.2019.2948470.
  • Mining Technology, 2024. Leading mining companies in the internet of things theme. Available at https://www.mining-technology.com/data-insights/leading-mining-companies-in-the-internet-of-things-theme/?cf-view.
  • M. Onifade, J.A. Adebisi, and T. Zvarivadza, Recent advances in blockchain technology: Prospects, applications and constraints in the minerals industry, Int. J. Min. Reclam. Environ. (2024), pp. 1–37. doi:10.1080/17480930.2024.2319453.
  • M. Onifade, T. Zvarivadza, and J.A. Adebisi, Towards application of positioning systems for safety and environmental protection in the mining industry, Int. Min. Miner. Eng. 15 (1) (2024), doi:10.1504/IJMME.2024.10063420.