81
Views
0
CrossRef citations to date
0
Altmetric
Review

What is novel in the clinical management of pemphigus vulgaris?

, &
Pages 489-503 | Received 17 Feb 2024, Accepted 30 Apr 2024, Published online: 12 May 2024

References

  • Zhou X, Zhan T, Xu X, et al. The efficacy and safety of low-dose rituximab in the treatment of pemphigus vulgaris: a cohort study. J DermatolTreat. 2024;35(1):2302071. doi: 10.1080/09546634.2024.2302071
  • Tedbirt B, Maho-Vaillant M, Houivet E, et al. Sustained remission without corticosteroids among patients with pemphigus who had rituximab as first-line therapy: follow-up of the Ritux 3 trial. JAMA Dermatol. 2024;160(3):290–296. doi: 10.1001/jamadermatol.2023.5679
  • Joly P, Horvath B, Patsatsi A, et al. Updated S2K guidelines on the management of pemphigus vulgaris and foliaceus initiated by the European academy of dermatology and venereology (EADV). J Eur Acad Dermatol Venereol. 2020;34(9):1900–1913. doi: 10.1111/jdv.16752
  • Didona D, Schmidt MF, Maglie R, et al. Pemphigus and pemphigoids: clinical presentation, diagnosis and therapy. J Dtsch Dermatol Ges. 2023;21(10):1188–1209. doi: 10.1111/ddg.15174
  • Murrell DF. What is the true mortality from pemphigus? Br J Dermatol. 2016;174(6):1185–1186. doi: 10.1111/bjd.14711
  • Rizzo C, Fotino M, Zhang Y, et al. Direct characterization of human T cells in pemphigus vulgaris reveals elevated autoantigen-specific Th2 activity in association with active disease. Clin Exp Dermatol. 2005;30(5):535–540. doi: 10.1111/j.1365-2230.2005.01836.x
  • Haghighi Javid A, Li D, Technau-Hafsi K, et al. Interleukin-17A immune pattern across genetic acantholytic and blistering disorders. Clin Exp Dermatol. 2023;48(5):518–523. doi: 10.1093/ced/llad012
  • Polakova A, Kauter L, Ismagambetova A, et al. Detection of rare autoreactive T cell subsets in patients with pemphigus vulgaris. Front Immunol. 2022;13:979277. doi: 10.3389/fimmu.2022.979277
  • Yuan H, Zhou S, Liu Z, et al. Pivotal role of lesional and perilesional T/B lymphocytes in Pemphigus Pathogenesis. J Invest Dermatol. 2017;137(11):2362–2370. doi: 10.1016/j.jid.2017.05.032
  • Poulsen LK, Hummelshoj L. Triggers of IgE class switching and allergy development. Ann Med. 2007;39(6):440–456. doi: 10.1080/07853890701449354
  • Tsuboi H, Matsuo N, Iizuka M, et al. Analysis of IgG4 class switch-related molecules in IgG4-related disease. Arthritis Res Ther. 2012;14(4):R171. doi: 10.1186/ar3924
  • Casan JML, Wong J, Northcott MJ, et al. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother. 2018;14(12):2820–2841. doi: 10.1080/21645515.2018.1508624
  • Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–454. doi: 10.1016/0167-5699(94)90276-3
  • Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–371. doi: 10.4049/jimmunol.177.1.362
  • Zhang B. Ofatumumab. MAbs. 2009;1(4):326–331. doi: 10.4161/mabs.1.4.8895
  • Joly P, Maho-Vaillant M, Prost-Squarcioni C, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 2017;389(10083):2031–2040. doi: 10.1016/S0140-6736(17)30070-3
  • Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al. Pemphigus. Nat Rev Dis Primers. 2017;3(1). doi: 10.1038/nrdp.2017.26
  • Ellebrecht CT, Choi EJ, Allman DM, et al. Subcutaneous veltuzumab, a humanized anti-CD20 antibody, in the treatment of refractory pemphigus vulgaris. JAMA Dermatol. 2014;150(12):1331. doi: 10.1001/jamadermatol.2014.1939
  • Crowley MP, McDonald V, Scully M. Ofatumumab for TTP in a patient with anaphylaxis associated with Rituximab. N Engl J Med. 2018;378(1):92–93. doi: 10.1056/NEJMc1714146
  • Rapp M, Pentland A, Richardson C. Successful treatment of pemphigus vulgaris with ofatumumab. J Drugs Dermatol. 2018;17(12):1338–1339.
  • Klufas DM, Amerson E, Twu O, et al. Refractory pemphigus vulgaris successfully treated with ofatumumab. JAAD Case Rep. 2020;6(8):734–736. doi: 10.1016/j.jdcr.2020.05.034
  • Malik AM, Tupchong S, Huang S, et al. An updated review of pemphigus diseases. Medicina (Kaunas). 2021;57(10):1080. doi: 10.3390/medicina57101080
  • Mazloom E, Daneshpazhooh M, Shokouhi Shoormasti R, et al. Intralesional injection of biosimilar rituximab in recalcitrant mucocutaneous lesions of patients with pemphigus vulgaris: a pilot study. Dermatol Ther. 2020;33(6):e14407. doi: 10.1111/dth.14407
  • Cerny T, Borisch B, Introna M, et al. Mechanism of action of rituximab. Anticancer Drugs. 2002;13(Suppl 2):S3–10. doi: 10.1097/00001813-200211002-00002
  • Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 2004;104(6):1793–1800. doi: 10.1182/blood-2004-01-0039
  • Craigen JL, Mackus WJM, Engleberts P, et al. Ofatumumab, a human mab targeting a membrane-proximal small-loop epitope on CD20, induces potent NK cell-mediated ADCC. Blood. 2009;114(22):1725–. doi: 10.1182/blood.V114.22.1725.1725
  • Pawluczkowycz AW, Beurskens FJ, Beum PV, et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–758. doi: 10.4049/jimmunol.0900632
  • Sanford M, McCormack PL. Ofatumumab. Drugs. 2010;70(8):1013–1019. doi: 10.2165/11203850-000000000-00000
  • Zhang X, Xiao Y, Li X, et al. Ofatumumab subcutaneous injection successfully treated patients with pemphigus vulgaris relapse post rituximab. J Dermatol. 2024. doi: 10.1111/1346-8138.17108
  • Goldenberg DM, Rossi EA, Stein R, et al. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009;113(5):1062–1070. doi: 10.1182/blood-2008-07-168146
  • Goldenberg DM, Morschhauser F, Wegener WA. Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk Lymphoma. 2010;51(5):747–755. doi: 10.3109/10428191003672123
  • Abulikemu K, Hu F, Liang J, et al. Targeting therapy in pemphigus: where are we now and where are we going? Heliyon. 2023;9(6):e16679. doi: 10.1016/j.heliyon.2023.e16679
  • Meyer S, Evers M, Jansen JHM, et al. New insights in type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies. Br J Haematol. 2018;180(6):808–820. doi: 10.1111/bjh.15132
  • Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and other CD20(+) B-Cell-depleting therapies in multiple sclerosis. Neurotherapeutics. 2017;14(4):835–841. doi: 10.1007/s13311-017-0557-4
  • Capasso N, Nozzolillo A, Scalia G, et al. Ocrelizumab depletes T-lymphocytes more than rituximab in multiple sclerosis. Mult Scler Relat Disord. 2021;49:102802. doi: 10.1016/j.msard.2021.102802
  • Benesh G, Andriano TM, Cohen SR. Pemphigus vulgaris successfully treated with ocrelizumab following rituximab allergy. JAAD Case Rep. 2021;16:12–15. doi: 10.1016/j.jdcr.2021.08.005
  • de-la-Rosa-Fernandez E, Loizate-Sarrionandia I, Gonzalez-Rodriguez J, et al. Ocrelizumab, an alternative to rituximab in refractory pemphigus vulgaris management. J Eur Acad Dermatol Venereol. 2023;37(9):e1104–e6. doi: 10.1111/jdv.19133
  • Shipkova M, Wieland E. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta. 2012;413(17–18):1338–1349. doi: 10.1016/j.cca.2011.11.006
  • Tavakolpour S, Mahmoudi H, Mirzazadeh A, et al. Pathogenic and protective roles of cytokines in pemphigus: a systematic review. Cytokine. 2020;129:155026. doi: 10.1016/j.cyto.2020.155026
  • Renkl A, Mockenhaupt M, Technau K, et al. A novel therapeutic option in pemphigus vulgaris: humanized monoclonal anti-CD25 antibody. Br J Dermatol. 2004;150(6):1220–1222. doi: 10.1111/j.1365-2133.2004.05977.x
  • Assaf S, Malki L, Mayer T, et al. ST18 affects cell-cell adhesion in pemphigus vulgaris in a tumour necrosis factor-alpha-dependent fashion. Br J Dermatol. 2021;184(6):1153–1160. doi: 10.1111/bjd.19679
  • D’Auria L, Bonifati C, Mussi A, et al. Cytokines in the sera of patients with pemphigus vulgaris: interleukin-6 and tumour necrosis factor-alpha levels are significantly increased as compared to healthy subjects and correlate with disease activity. Eur Cytokine Netw. 1997;8(4):383–387.
  • Hennerici T, Pollmann R, Schmidt T, et al. Increased frequency of T follicular helper cells and elevated interleukin-27 plasma levels in patients with Pemphigus. PLoS One. 2016;11(2):e0148919. doi: 10.1371/journal.pone.0148919
  • Ameglio F, D’Auria L, Cordiali-Fei P, et al. Bullous pemphigoid and pemphigus vulgaris: correlated behaviour of serum VEGF, sE-selectin and TNF-alpha levels. J Biol Regul Homeost Agents. 1997;11(4):148–153.
  • Ameglio F, D’Auria L, Cordiali-Fei P, et al. Anti-intercellular substance antibody log titres are correlated with serum concentrations of interleukin-6, interleukin-15 and tumor necrosis factor-alpha in patients with pemphigus vulgaris relationships with peripheral blood neutrophil counts, disease severity and duration and patients’ age. J Biol Regul Homeost Agents. 1999;13(4):220–224.
  • Feliciani C, Toto P, Amerio P, et al. In vitro and in vivo expression of interleukin-1alpha and tumor necrosis factor-alpha mRNA in pemphigus vulgaris: interleukin-1alpha and tumor necrosis factor-alpha are involved in acantholysis. J Invest Dermatol. 2000;114(1):71–77. doi: 10.1046/j.1523-1747.2000.00835.x
  • López‐Robles E, Avalos‐Díaz E, Vega‐Memije E, et al. TNFα and IL‐6 are mediators in the blistering process of pemphigus. Int J Dermatol. 2001;40(3):185–188. doi: 10.1046/j.1365-4362.2001.01083.x
  • Khozeimeh F, Savabi O, Esnaashari M. Evaluation of interleukin-1alpha, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta in the serum of patients with pemphigus vulgaris. J Contemp Dent Pract. 2014;15(6):746–749. doi: 10.5005/jp-journals-10024-1610
  • Narbutt J, Lukamowicz J, Bogaczewicz J, et al. Serum concentration of interleukin-6 is increased both in active and remission stages of pemphigus vulgaris. Mediators Inflamm. 2008;2008:875394. doi: 10.1155/2008/875394
  • Lee SH, Hong WJ, Kim SC. Analysis of serum cytokine profile in Pemphigus. Ann Dermatol. 2017;29(4):438–445. doi: 10.5021/ad.2017.29.4.438
  • Timoteo RP, da Silva MV, Miguel CB, et al. Th1/Th17-related cytokines and chemokines and their implications in the pathogenesis of pemphigus vulgaris. Mediators Inflamm. 2017;2017:7151285. doi: 10.1155/2017/7151285
  • Kowalski EH, Kneibner D, Kridin K, et al. Serum and blister fluid levels of cytokines and chemokines in pemphigus and bullous pemphigoid. Autoimmun Rev. 2019;18(5):526–534. doi: 10.1016/j.autrev.2019.03.009
  • Pardo J, Mercader P, Mahiques L, et al. Infliximab in the management of severe pemphigus vulgaris. Br J Dermatol. 2005;153(1):222–223. doi: 10.1111/j.1365-2133.2005.06672.x
  • Gubinelli E, Bergamo F, Didona B, et al. Pemphigus foliaceus treated with etanercept. J Am Acad Dermatol. 2006;55(6):1107–1108. doi: 10.1016/j.jaad.2006.08.041
  • Vojackova N, Fialova J, Vanousova D, et al. Pemphigus vulgaris treated with adalimumab: case study. Dermatol Ther. 2012;25(1):95–97. doi: 10.1111/j.1529-8019.2012.01433.x
  • Andres TS, Alexandro B, de Oca-Sanchez Griselda M, et al. Etanercept plus methotrexate: an effective combination therapy for recalcitrant pemphigus vulgaris. J Res Med Sci. 2015;20(3):317. doi: 10.4103/1735-1995.156182
  • Didona D, Fania L, Di Zenzo G, et al. Erythromycin-induced pemphigus foliaceus successfully treated with etanercept. Dermatol Ther. 2020;33(6):e14201. doi: 10.1111/dth.14201
  • Kaya Erdogan H, Yuksel Canakci N, Acer E, et al. Successful treatment of pemphigus foliaceous and ankylosing spondylitis with infliximab and methotrexate: a case report. Dermatol Ther. 2020;33(4):e13801. doi: 10.1111/dth.13801
  • Daulat S, Detweiler JG, Pandya AG. Development of pemphigus vulgaris in a patient with psoriasis treated with etanercept. J Eur Acad Dermatol Venereol. 2009;23(4):483–484. doi: 10.1111/j.1468-3083.2008.02929.x
  • Hall RP 3rd, Fairley J, Woodley D, et al. A multicentre randomized trial of the treatment of patients with pemphigus vulgaris with infliximab and prednisone compared with prednisone alone. Br J Dermatol. 2015;172(3):760–768. doi: 10.1111/bjd.13350
  • Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–1456. doi: 10.1126/science.7533326
  • Lotti R, Shu E, Petrachi T, et al. Soluble fas ligand is essential for blister formation in Pemphigus. Front Immunol. 2018;9:370. doi: 10.3389/fimmu.2018.00370
  • Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J. 1995;14(22):5579–5588. doi: 10.1002/j.1460-2075.1995.tb00245.x
  • Lavrik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci. 2005;118(Pt 2):265–267. doi: 10.1242/jcs.01610
  • Altemeier WA, Zhu X, Berrington WR, et al. Fas (CD95) induces macrophage proinflammatory chemokine production via a MyD88-dependent, caspase-independent pathway. J Leukocyte Biol. 2007;82(3):721–728. doi: 10.1189/jlb.1006652
  • Orlov MD, Chernyavsky AI, Arredondo J, et al. Synergistic actions of pemphigus vulgaris IgG, fas-ligand and tumor necrosis factor-alpha during induction of basal cell shrinkage and acantholysis. Autoimmunity. 2006;39(7):557–562. doi: 10.1080/08916930600971729
  • Arredondo J, Chernyavsky AI, Karaouni A, et al. Novel mechanisms of target cell death and survival and of therapeutic action of IVIg in Pemphigus. Am J Pathol. 2005;167(6):1531–1544. doi: 10.1016/S0002-9440(10)61239-4
  • Lotti R, Hundt JE, Ludwig RJ, et al. Blocking soluble fas ligand ameliorates pemphigus: PC111 efficacy in ex-vivo human pemphigus models. Front Immunol. 2023;14:1193032. doi: 10.3389/fimmu.2023.1193032
  • Cauza K, Hinterhuber G, Dingelmaier-Hovorka R, et al. Expression of FcRn, the MHC class I-related receptor for IgG, in human keratinocytes. J Invest Dermatol. 2005;124(1):132–139. doi: 10.1111/j.0022-202X.2004.23542.x
  • Nelson CA, Tomayko MM. Targeting the FcRn: a novel approach to the treatment of Pemphigus. J Invest Dermatol. 2021;141(12):2777–2780. doi: 10.1016/j.jid.2021.06.035
  • Chen Y, Chernyavsky A, Webber RJ, et al. Critical role of the neonatal fc receptor (FcRn) in the pathogenic action of antimitochondrial autoantibodies synergizing with anti-desmoglein autoantibodies in pemphigus vulgaris. J Biol Chem. 2015;290(39):23826–23837. doi: 10.1074/jbc.M115.668061
  • Zakrzewicz A, Wurth C, Beckert B, et al. Stabilization of keratinocyte monolayer integrity in the presence of anti-desmoglein-3 antibodies through FcRn blockade with Efgartigimod: novel treatment paradigm for pemphigus? Cells. 2022;11(6):942. doi: 10.3390/cells11060942
  • Gornowicz-Porowska J, Kowalczyk MJ, Seraszek-Jaros A, et al. A comparative analysis of CD32A and CD16A polymorphisms in relation to autoimmune responses in Pemphigus diseases and subepithelial autoimmune blistering disorders. Genes (Basel). 2020;11(4):371. doi: 10.3390/genes11040371
  • Werth VP, Culton DA, Concha JSS, et al. Safety, tolerability, and activity of ALXN1830 targeting the neonatal fc receptor in chronic pemphigus. J Invest Dermatol. 2021;141(12):2858–65 e4. doi: 10.1016/j.jid.2021.04.031
  • Goebeler M, Bata-Csorgo Z, De Simone C, et al. Treatment of pemphigus vulgaris and foliaceus with efgartigimod, a neonatal fc receptor inhibitor: a phase II multicentre, open-label feasibility trial. Br J Dermatol. 2022;186(3):429–439. doi: 10.1111/bjd.20782
  • Maho-Vaillant M, Sips M, Golinski ML, et al. FcRn antagonism leads to a decrease of desmoglein-specific B cells: secondary analysis of a phase 2 study of Efgartigimod in Pemphigus Vulgaris and Pemphigus Foliaceus. Front Immunol. 2022;13:863095. doi: 10.3389/fimmu.2022.863095
  • 2023 https://www.argenx.com/news/argenx-reports-topline-results-address-study-efgartigimod-sc-pemphigus Argenx reports topline results address study efgartigimod sc pemphigus
  • Li N, Zhao M, Hilario-Vargas J, et al. Complete FcRn dependence for intravenous ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115(12):3440–3450. doi: 10.1172/JCI24394
  • Asashima N, Fujimoto M, Watanabe R, et al. Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris. Br J Dermatol. 2006;155(2):330–336. doi: 10.1111/j.1365-2133.2006.07305.x
  • Dorner T, Posch MG, Li Y, et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann Rheum Dis. 2019;78(5):641–647. doi: 10.1136/annrheumdis-2018-214720
  • Hebert V, Maho-Vaillant M, Golinski ML, et al. Modifications of the BAFF/BAFF-Receptor axis in patients with pemphigus treated with rituximab versus standard corticosteroid regimen. Front Immunol. 2021;12:666022. doi: 10.3389/fimmu.2021.666022
  • Daneshvar E, Tavakolpour S, Mahmoudi H, et al. Elevated serum level of B-cell activating factor (BAFF) after rituximab therapy in pemphigus vulgaris patients suggests a possible therapeutic efficacy of B-cell depletion therapies combined with anti-BAFF agents. Int J Dermatol. 2023;62(4):567–574. doi: 10.1111/ijd.16363
  • Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity. 2004;20(6):785–798. doi: 10.1016/j.immuni.2004.05.010
  • Torkamani N, Kamali Sarvestani E, Naseri M. Investigation of serum APRIL and BAFF levels in pemphigus vulgaris patients in southern Iran. Iran J Dermatol. 2011;14(1):16–19.
  • Gandolfo S, De Vita S. Double anti-B cell and anti-BAFF targeting for the treatment of primary Sjögren’s syndrome. Clin Exp Rheumatol. 2019;37 Suppl 118(Suppl 3):199–208.
  • Ruan J, Zhang X, Zheng M. Belimumab for the treatment of pemphigus. Dermatologic Therapy. 2022;35(8). doi: 10.1111/dth.15621
  • Fetter T, Niebel D, Braegelmann C, et al. Skin-Associated B Cells in the pathogenesis of cutaneous autoimmune diseases—implications for therapeutic approaches. Cells. 2020;9(12):2627. doi: 10.3390/cells9122627
  • Patsatsi A, Murrell DF. Bruton Tyrosine Kinase Inhibition and its role as an emerging treatment in Pemphigus. Front Med. 2021;8:708071. doi: 10.3389/fmed.2021.708071
  • Langrish CL, Bradshaw JM, Francesco MR, et al. Preclinical efficacy and anti-inflammatory mechanisms of action of the Bruton Tyrosine Kinase inhibitor rilzabrutinib for immune-mediated disease. J Immunol. 2021;206(7):1454–1468. doi: 10.4049/jimmunol.2001130
  • Smith PF, Krishnarajah J, Nunn PA, et al. A phase I trial of PRN1008, a novel reversible covalent inhibitor of Bruton’s tyrosine kinase, in healthy volunteers. Br J Clin Pharmacol. 2017;83(11):2367–2376. doi: 10.1111/bcp.13351
  • Lee A, Sandhu S, Imlay-Gillespie L, et al. Successful use of Bruton’s kinase inhibitor, ibrutinib, to control paraneoplastic pemphigus in a patient with paraneoplastic autoimmune multiorgan syndrome and chronic lymphocytic leukaemia. Australas J Dermatol. 2017;58(4):e240–e2. doi: 10.1111/ajd.12615
  • Ito Y, Makita S, Maeshima AM, et al. Paraneoplastic Pemphigus associated with B-cell chronic lymphocytic leukemia treated with ibrutinib and Rituximab. Intern Med. 2018;57(16):2395–2398. doi: 10.2169/internalmedicine.0578-17
  • Bradshaw JM, McFarland JM, Paavilainen VO, et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol. 2015;11(7):525–531. doi: 10.1038/nchembio.1817
  • Stephens DM, Byrd JC. How I manage ibrutinib intolerance and complications in patients with chronic lymphocytic leukemia. Blood. 2019;133(12):1298–1307. doi: 10.1182/blood-2018-11-846808
  • Naik PP. Translational autoimmunity in pemphigus and the role of novel Bruton tyrosine kinase inhibitors. J Transl Autoimmun. 2022;5:100156. doi: 10.1016/j.jtauto.2022.100156
  • Murrell DF, Patsatsi A, Stavropoulos P, et al. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: the phase II BELIEVE study. Br J Dermatol. 2021;185(4):745–755. doi: 10.1111/bjd.20431
  • Murrell DF, Caux F, Patsatsi A, et al. Efficacy and safety of Rilzabrutinib in Pemphigus: PEGASUS phase 3 randomized study. J Invest Dermatol. 2024. doi: 10.1016/j.jid.2024.02.023
  • Goodale EC, Varjonen KE, Outerbridge CA, et al. Efficacy of a Bruton’s tyrosine kinase inhibitor (PRN-473) in the treatment of canine pemphigus foliaceus. Vet Dermatol. 2020;31(4):291–e71. doi: 10.1111/vde.12841
  • Yamagami J, Ujiie H, Aoyama Y, et al. A multicenter, open-label, uncontrolled, single-arm phase 2 study of tirabrutinib, an oral Bruton’s tyrosine kinase inhibitor, in pemphigus. J Dermatol Sci. 2021;103(3):135–142. doi: 10.1016/j.jdermsci.2021.07.002
  • Siddiqi HF, Staser KW, Nambudiri VE. Research techniques made simple: CAR T-Cell therapy. J Invest Dermatol. 2018;138(12):2501–4.e1. doi: 10.1016/j.jid.2018.09.002
  • Wang C, Wang J, Che S, et al. CAR-T cell therapy for hematological malignancies: history, status and promise. Heliyon. 2023;9(11):e21776. doi: 10.1016/j.heliyon.2023.e21776
  • Miao L, Zhang Z, Ren Z, et al. Reactions related to CAR-T cell therapy. Front Immunol. 2021;12:663201. doi: 10.3389/fimmu.2021.663201
  • Rubin CB, Elenitsas R, Taylor L, et al. Evaluating the skin in patients undergoing chimeric antigen receptor modified T-cell therapy. J Am Acad Dermatol. 2016;75(5):1054–1057. doi: 10.1016/j.jaad.2016.06.062
  • Ghilardi G, Fraietta JA, Gerson JN, et al. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nature Med. 2024;30(4):984–989. doi: 10.1038/s41591-024-02826-w
  • Lee J, Lundgren DK, Mao X, et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Invest. 2020;130(12):6317–6324. doi: 10.1172/JCI138416
  • Ellebrecht CT, Bhoj VG, Nace A, et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353(6295):179–184. doi: 10.1126/science.aaf6756
  • Yamaoka K, Saharinen P, Pesu M, et al. The janus kinases (Jaks). Genome Biol. 2004;5(12):253. doi: 10.1186/gb-2004-5-12-253
  • Velazquez L, Fellous M, Stark GR, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70(2):313–322. doi: 10.1016/0092-8674(92)90105-L
  • Macchi P, Villa A, Giliani S, et al. Mutations of jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377(6544):65–68. doi: 10.1038/377065a0
  • Samadi A, Ahmad Nasrollahi S, Hashemi A, et al. Janus kinase (JAK) inhibitors for the treatment of skin and hair disorders: a review of literature. J DermatolTreat. 2017;28(6):476–483. doi: 10.1080/09546634.2016.1277179
  • Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT. 2013;2(3):e24137. doi: 10.4161/jkst.24137
  • Fukuyama T, Ehling S, Cook E, et al. Topically administered janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J Pharmacol Exp Ther. 2015;354(3):394–405. doi: 10.1124/jpet.115.223784
  • Harel S, Higgins CA, Cerise JE, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015;1(9):e1500973. doi: 10.1126/sciadv.1500973
  • Deeks ED, Duggan S. Abrocitinib: first approval. Drugs. 2021;81(18):2149–2157. doi: 10.1007/s40265-021-01638-3
  • Dhillon S. Delgocitinib: first approval. Drugs. 2020;80(6):609–615. doi: 10.1007/s40265-020-01291-2
  • Shawky AM, Almalki FA, Abdalla AN, et al. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics. 2022;14(5):1001. doi: 10.3390/pharmaceutics14051001
  • Juczynska K, Wozniacka A, Waszczykowska E, et al. Expression of JAK3, STAT2, STAT4, and STAT6 in pemphigus vulgaris. Immunol Res. 2020;68(2):97–103. doi: 10.1007/s12026-020-09122-y
  • Ociepa K, Danilewicz M, Wagrowska-Danilewicz M, et al. Expression of the selected proteins of JAK/STAT signaling pathway in diseases with oral mucosa involvement. Int J Mol Sci. 2022;24(1):323. doi: 10.3390/ijms24010323
  • Fan B, Wang M. Ruxolitinib, a JAK1/2 inhibitor as treatment for paraneoplastic pemphigus: a case report. Acta Derm Venereol. 2022;102:adv00732. doi: 10.2340/actadv.v102.1378
  • Wang L, Zhao B. Janus kinase inhibitor—tofacitinib associated with pemphigus: an analysis of the FDA adverse event reporting system data. Expert Opin Drug Saf. 2023;22(12):1–4. doi: 10.1080/14740338.2023.2248872
  • Koga T, Hedrich CM, Mizui M, et al. CaMK4-dependent activation of AKT/mTOR and CREM-α underlies autoimmunity-associated Th17 imbalance. J Clin Investig. 2014;124(5):2234–2245. doi: 10.1172/JCI73411
  • Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18(1). doi: 10.1186/s12943-019-0954-x
  • Pretel M, España A, Marquina M, et al. An imbalance in Akt/mTOR is involved in the apoptotic and acantholytic processes in a mouse model of pemphigus vulgaris. Exp Dermatol. 2009;18(9):771–780. doi: 10.1111/j.1600-0625.2009.00893.x
  • Espana A, Modol T, Gil MP, et al. Neural nitric oxide synthase participates in pemphigus vulgaris acantholysis through upregulation of Rous sarcoma, mammalian target of rapamycin and focal adhesion kinase. Exp Dermatol. 2013;22(2):125–130. doi: 10.1111/exd.12088
  • Lai K, Zhang W, Li S, et al. mTOR pathway regulates the differentiation of peripheral blood Th2/Treg cell subsets in patients with pemphigus vulgaris. Acta Biochim Biophys Sin (Shanghai). 2021;53(4):438–445. doi: 10.1093/abbs/gmab008
  • Pombo-Suarez M, Gomez-Reino JJ. Abatacept for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2019;15(4):319–326. doi: 10.1080/1744666X.2019.1579642
  • Lorenzetti R, Janowska I, Smulski CR, et al. Abatacept modulates CD80 and CD86 expression and memory formation in human B-cells. J Autoimmun. 2019;101:145–152. doi: 10.1016/j.jaut.2019.04.016
  • Sweet BV. Abatacept. Am J Health Syst Pharm. 2006;63(21):2065–2077. doi: 10.2146/ajhp060200
  • Alenazy MF, Saheb Sharif-Askari F, Omair MA, et al. Abatacept enhances blood regulatory B cells of rheumatoid arthritis patients to a level that associates with disease remittance. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-83615-0
  • McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine. 2015;75(1):38–50. doi: 10.1016/j.cyto.2015.05.023
  • Tavakolpour S, Tavakolpour V. Interleukin 4 inhibition as a potential therapeutic in pemphigus. Cytokine. 2016;77:189–195. doi: 10.1016/j.cyto.2015.09.017
  • Russo R, Cozzani E, Gasparini G, et al. Targeting interleukin 4 receptor alpha: a new approach to the treatment of cutaneous autoimmune bullous diseases? Dermatol Ther. 2020;33(1):e13190. doi: 10.1111/dth.13190
  • Lin MS, Swartz SJ, Lopez A, et al. Development and characterization of desmoglein-3 specific T cells from patients with pemphigus vulgaris. J Clin Invest. 1997;99(1):31–40. doi: 10.1172/JCI119130
  • Rico MJ, Benning C, Weingart ES, et al. 3rd. Characterization of skin cytokines in bullous pemphigoid and pemphigus vulgaris. Br J Dermatol. 1999;140(6):1079–1086. doi: 10.1046/j.1365-2133.1999.02907.x
  • Caproni M, Giomi B, Cardinali C, et al. Further support for a role for Th2-like cytokines in blister formation of pemphigus. Clin Immunol. 2001;98(2):264–271. doi: 10.1006/clim.2000.4974
  • Satyam A, Khandpur S, Sharma VK, et al. Involvement of T(H)1/T(H)2 cytokines in the pathogenesis of autoimmune skin disease-Pemphigus vulgaris. Immunol Invest. 2009;38(6):498–509. doi: 10.1080/08820130902943097
  • Toumi A, Abida O, Ben Ayed M, et al. Cytokine gene polymorphisms in Tunisian endemic pemphigus foliaceus: a possible role of il-4 variants. Hum Immunol. 2013;74(5):658–665. doi: 10.1016/j.humimm.2013.01.009
  • Chen S, Zhan S, Hua C, et al. A novel combined use of dupilumab for treatment of aggressive refractory pemphigus vulgaris complicated with pulmonary tuberculosis: a case report and the RNA-seq analysis. Front Immunol. 2022;13:825796. doi: 10.3389/fimmu.2022.825796
  • Jiang C, Adjei S, Santiago S, et al. Novel use of dupilumab in pemphigus vulgaris and pemphigus foliaceus. JAAD Case Rep. 2023;42:12–15. doi: 10.1016/j.jdcr.2023.09.018
  • Moore AY, Hurley K. Dupilumab monotherapy suppresses recalcitrant pemphigus vulgaris. JAAD Case Rep. 2023;31:16–18. doi: 10.1016/j.jdcr.2022.10.035
  • Shen F, Gaffen SL. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine. 2008;41(2):92–104. doi: 10.1016/j.cyto.2007.11.013
  • Arakawa M, Dainichi T, Yasumoto S, et al. Lesional Th17 cells in pemphigus vulgaris and pemphigus foliaceus. J Dermatol Sci. 2009;53(3):228–231. doi: 10.1016/j.jdermsci.2008.09.008
  • Xu R-C, Zhu H-Q, Li W-P, et al. The imbalance of Th17 and regulatory T cells in pemphigus patients. Eur J Dermatol. 2013;23(6):795–802. doi: 10.1684/ejd.2013.2177
  • Xue J, Su W, Chen Z, et al. Overexpression of interleukin-23 and interleukin-17 in the lesion of pemphigus vulgaris: a preliminary study. Mediators Inflamm. 2014;2014:463928. doi: 10.1155/2014/463928
  • Zebrowska A, Wozniacka A, Juczynska K, et al. Correlation between IL36alpha and IL17 and activity of the disease in selected autoimmune blistering diseases. Mediators Inflamm. 2017;2017:8980534. doi: 10.1155/2017/8980534
  • Ben Jmaa M, Abida O, Fakhfakh R, et al. Involvement of the IL23/Th17 pathway in the pathogenesis of Tunisian Pemphigus Foliaceus. Mediators Inflamm. 2018;2018:8206983. doi: 10.1155/2018/8206983
  • Huang Z-X, Qu P, Wang K-K, et al. Transcriptomic profiling of pemphigus lesion infiltrating mononuclear cells reveals a distinct local immune microenvironment and novel lncRNA regulators. J Transl Med. 2022;20(1). doi: 10.1186/s12967-022-03387-7
  • Gholibeigian Z, Izad M, Daneshpazhooh M, et al. Decreased serum levels of interleukin-17, interleukin-23, TGF-beta in pemphigus vulgaris patients, and their association with disease phase. Dermatol Ther. 2020;33(6):e14071. doi: 10.1111/dth.14071
  • Joshi N, Minz RW, Anand S, et al. Vitamin D deficiency and lower TGF-β/IL-17 ratio in a North Indian cohort of pemphigus vulgaris. BMC Res Notes. 2014;7(1):536. doi: 10.1186/1756-0500-7-536
  • Singh PK, Das S, Rai G, et al. A snapshot of T cell subset cytokines in Pemphigus Vulgaris: a cross-sectional study. Cureus. 2022. doi: 10.7759/cureus.29890
  • Holstein J, Solimani F, Baum C, et al. Immunophenotyping in pemphigus reveals a T(H)17/T(FH)17 cell-dominated immune response promoting desmoglein1/3-specific autoantibody production. J Allergy Clin Immunol. 2021;147(6):2358–2369. doi: 10.1016/j.jaci.2020.11.008
  • Lin X, Chen M, Li X, et al. Low SOCS3 expression in CD4+ T cells from pemphigus vulgaris patients enhanced Th1- and Th17-cell differentiation and exacerbated acantholysis via STAT activation. Mol Immunol. 2022;150:114–125. doi: 10.1016/j.molimm.2022.08.007
  • Ansari MA, Singh PK, Dar SA, et al. Deregulated phenotype of autoreactive Th17 and treg clone cells in pemphigus vulgaris after in-vitro treatment with desmoglein antigen (dsg-3). Immunobiology. 2023;228(2):152340. doi: 10.1016/j.imbio.2023.152340
  • Schauer F, Meiss F, Thoma K, et al. IL17 inhibition for psoriasis vulgaris and arthritis results in clinical and serological remission of coexistent pemphigus foliaceus. J Dermatol. 2021;48(6):e246–e7. doi: 10.1111/1346-8138.15801
  • Kohlmann J, Simon JC, Kunz M, et al. Possible effect of interleukin-17 blockade in pemphigus foliaceus and neutrophilic diseases. Hautarzt. 2019;70(8):641–644. doi: 10.1007/s00105-019-4414-8
  • Morishima-Koyano M, Nobeyama Y, Fukasawa-Momose M, et al. Case of pemphigus foliaceus misdiagnosed as a single condition of erythrodermic psoriasis and modified by brodalumab. J Dermatol. 2020;47(5):e201–e2. doi: 10.1111/1346-8138.15295
  • Ohata C, Shimizu Y, Hayashi M. Pemphigus foliaceus in a patient with psoriasis treated with brodalumab. J Dermatol. 2020;47(12):e455–e7. doi: 10.1111/1346-8138.15584
  • Alecu M, Alecu S, Coman G, et al. ICAM-1, ELAM-1, TNF-alpha and IL-6 in serum and blister liquid of pemphigus vulgaris patients. Roum Arch Microbiol Immunol. 1999;58(2):121–130.
  • Mortazavi H, Babaeijandaghi F, Akbarzadeh M, et al. The influence of systemic therapy on the serum levels of IL‐6 and IL‐8 in pemphigus vulgaris. J Eur Acad Dermatol Venereol. 2011;27(3):387–390. doi: 10.1111/j.1468-3083.2011.04319.x
  • Pereira NF, Hansen JA, Lin MT, et al. Cytokine gene polymorphisms in endemic pemphigus foliaceus: a possible role for IL6 variants. Cytokine. 2004;28(6):233–241. doi: 10.1016/j.cyto.2004.08.006
  • Mosaad YM, Fathy H, Fawzy Z, et al. Tumor necrosis factor-alpha -308 G>A and interleukin-6 -174 G>C promoter polymorphisms and pemphigus. Hum Immunol. 2012;73(5):560–565. doi: 10.1016/j.humimm.2012.02.001
  • Caso F, Iaccarino L, Bettio S, et al. Refractory pemphigus foliaceus and Behçet’s disease successfully treated with tocilizumab. Immunol Res. 2013;56(2–3):390–397. doi: 10.1007/s12026-013-8411-1
  • Andrew K, Dhariwal SK, Szczecinska W. Sarilumab (interleukin-6 receptor monoclonal antibody) for the treatment of pemphigus vulgaris. Clin Exp Dermatol. 2023;48(9):1055–1056. doi: 10.1093/ced/llad173
  • Sakaguchi S, Miyara M, Costantino CM, et al. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490–500. doi: 10.1038/nri2785
  • Awasthi A, Kuchroo VK. Th17 cells: from precursors to players in inflammation and infection. Int Immunol. 2009;21(5):489–498. doi: 10.1093/intimm/dxp021
  • Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27(4):635–646. doi: 10.1016/j.immuni.2007.08.014
  • Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–1362. doi: 10.1038/ni1536
  • Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–275. doi: 10.1126/science.1160062
  • Josefowicz SZ, Niec RE, Kim HY, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395–399. doi: 10.1038/nature10772
  • Hsieh CS, Lee HM, Lio CW. Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012;12(3):157–167. doi: 10.1038/nri3155
  • Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10(12):849–859. doi: 10.1038/nri2889
  • Selck C, Dominguez-Villar M. Antigen-Specific Regulatory T Cell Therapy in autoimmune diseases and transplantation. Front Immunol. 2021;12:12. doi: 10.3389/fimmu.2021.661875
  • Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:1–7. doi: 10.1016/j.coi.2013.12.005
  • Didona D, Maglie R, Eming R, et al. Pemphigus: Current and future therapeutic strategies. Front Immunol. 2019;10:1418. doi: 10.3389/fimmu.2019.01418
  • Abd El-Magid WM, Ahmed SF, Assaf H, et al. Immunohistochemical expression of regulatory T cells (CD(4) (+) CD(25) (+) bright FOXP(3) (+)) in pemphigus patients. J Cosmet Dermatol. 2022;21(10):4871–4876. doi: 10.1111/jocd.14854
  • Yokoyama T, Matsuda S, Takae Y, et al. Antigen-independent development of Foxp3+ regulatory T cells suppressing autoantibody production in experimental pemphigus vulgaris. Int Immunol. 2011;23(6):365–373. doi: 10.1093/intimm/dxr020
  • Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–1826. doi: 10.1056/NEJMra052638
  • Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124(3):344–353. doi: 10.1182/blood-2014-02-514778
  • Oyama Y, Parker ER, Brieva J, et al. High-dose immune suppression and autologous hematopoietic stem cell transplantation in refractory pemphigus foliaceus. Bone Marrow Transplant. 2004;34(12):1097–1098. doi: 10.1038/sj.bmt.1704679
  • Suslova IM, Theodoropoulos DS, Cullen NA, et al. Pemphigus vulgaris treated with allogeneic hematopoietic stem cell transplantation following non-myeloablative conditioning. Eur Rev Med Pharmacol Sci. 2010;14(9):785–788.
  • Vanikar A, Trivedi H, Patel R, et al. Allogenic hematopoietic stem cell transplantation in pemphigus vulgaris: a single-center experience. Indian J Dermatol. 2012;57(1):9. doi: 10.4103/0019-5154.92667
  • Wang M, Cao C, Sun J, et al. Application of autologous hematopoietic stem cell transplantation for pemphigus. Int J Dermatol. 2017;56(3):296–301. doi: 10.1111/ijd.13461
  • Khandpur S, Gupta S, Gunaabalaji DR. Stem cell therapy in dermatology. Indian J Dermatol Venereol Leprol. 2021;87:753–767. doi: 10.25259/IJDVL_19_20
  • Yuan H, Pan M, Chen H, et al. Immunotherapy for pemphigus: present and future. Front Med. 2022;9:901239. doi: 10.3389/fmed.2022.901239
  • Kim AR, Han D, Choi JY, et al. Targeting inducible costimulator expressed on CXCR5(+)PD-1(+) T(H) cells suppresses the progression of pemphigus vulgaris. J Allergy Clin Immunol. 2020;146(5):1070–9 e8. doi: 10.1016/j.jaci.2020.03.036
  • Aoki-Ota M, Kinoshita M, Ota T, et al. Tolerance induction by the blockade of CD40/CD154 interaction in pemphigus vulgaris mouse model. J Invest Dermatol. 2006;126(1):105–113. doi: 10.1038/sj.jid.5700016
  • Mao X, Sano Y, Park JM, et al. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J Biol Chem. 2011;286(2):1283–1291. doi: 10.1074/jbc.M110.172874
  • Musette P, Bouaziz JD. B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol. 2018;9:622. doi: 10.3389/fimmu.2018.00622
  • Koga H, Tsutsumi M, Teye K, et al. Subcorneal pustular dermatosis-type IgA pemphigus associated with multiple myeloma: a case report and literature review. J Dermatol. 2023;50(2):234–238. doi: 10.1111/1346-8138.16516
  • Frampton JE. Rituximab: a review in pemphigus vulgaris. Am J Clin Dermatol. 2020;21(1):149–156. doi: 10.1007/s40257-019-00497-9
  • Mustin DE, Cole EF, Leibowitz R, et al. Comparing clinical outcomes of steroid-sparing therapy with rituximab versus rituximab alone in Pemphigus. J Drugs Dermatol. 2024;23(3):e97–e9. doi: 10.36849/jdd.7949

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.