136
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Development of robotics in vegetable seedling transplantation: a future research direction

, &

References

  • Assal, S., and I. Ndawula. 2019. Optimum design and FEA of a hybrid parallel-deployable structure-based 3-DOF multi-gripper translational robot for field pot seedlings transplanting. Proceedings 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2019), 29-31 July 2019, Prague, Czech Republic.
  • Bechar, A., and C. Vigneault. 2016. Agricultural robots for field operations: Concepts and components. Biosyst. Eng. 149:94–111. doi: 10.1016/j.biosystemseng.2016.06.014.
  • Carlos, J., M. Choque, S.N.F. Alcorta, and G.S.R. Prado. 2019. Construction of a mechanical gripper for the automatic transplanting of seedlings in a multi-cell tray. IEEE XXVI International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 12-14 August 2019, Lima, Peru. doi: 10.1109/INTERCON.2019.8853595.
  • Dohi, M. 1996. Development of multipurpose robot for vegetable production. Jpn. Agric. Res. Q. 30:227–232.
  • Feng, Q., X. Wang, K. Jiang, J. Zhou, R. Zhang, and W. Ma. 2013. Design and test of key parts on automatic transplanter for flower seedling. Trans. Chin. Soc. Agric. Eng. 29(6):21–27.
  • Gao, G.H., T.X. Feng, and F. Li. 2015. Working parameters optimization and experimental verification of inclined-inserting transplanting manipulator for plug seedling. Trans. Chin. Soc. Agric. Eng. 31(24):16–22.
  • Grift, T., Q. Zhang, N. Kondo, and K.C. Ting. 2008. A review of automation and robotics for the bio-industry. J. Biomech. Eng. 1(1):37–54.
  • Han, L., H. Mao, J. Hu, and K. Tian. 2015. Development of a doorframe-typed swinging seedling pick-up device for automatic field transplantation. Span. J. Agric. Res. 13(2):e0210. doi: 10.5424/sjar/2015132-6992.
  • Hu, J., X. Yan, J. Ma, C. Qi, K. Francis, and H. Mao. 2014. Dimensional synthesis and kinematics simulation of a high-speed plug seedling-transplanting robot. Comput. Electron. Agric. 107:64–72. doi: 10.1016/j.compag.2014.06.004.
  • Hu, M.J., and W.Q. Yin. 2011. Experimental research on the deformed sliding needle pick-up device for plug seedlings. Acta Agric. Zhejiangensis 23(1):154–158.
  • Hwang, H., and F.E. Sistler. 1986. A robotic pepper transplanter. Appl. Eng. Agric. 2(1):1–5. doi: 10.13031/2013.26695.
  • Jiang, Z., Y. Hu, H. Jiang, and J. Tong. 2017. Design and force analysis of end-effector for plug seedling transplanter. PLoS One 12(7):e0180229. doi: 10.1371/journal.pone.0180229.
  • Jin, X., M. Li, D. Li, J. Ji, J. Pang, J. Wang, and L. Peng. 2018. Development of automatic conveying system for vegetable seedlings. EURASIP J. Wirel. Commun. Netw. 178:1–9.
  • Joseph, R.A.N., R. Sundaram, V.G. Mahesh, Z. Zhuang, and A. Simeone. 2019. A multi-sensor system for silkworm cocoon gender classification via image processing and support vector machine. Sensors 19(12):2656. doi: 10.3390/s19122656.
  • Kang, D.H., D.E. Kim, G.I. Lee, Y.H. Kim, H.J. Lee, and Y.B. Min. 2012. Development of a vegetable transplanting robot. J. Biosyst. Eng. 37(3):201–208. doi: 10.5307/JBE.2012.37.3.201.
  • Khadatkar, A., A.P. Pandirwar, and V. Paradkar. 2023. Design, development and application of a compact robotic transplanter with automatic seedling picking mechanism for plug‑type seedlings. Sci. Rep. 13:1883. doi: 10.1038/s41598-023-28760-4.
  • Kutz, L.A., J.B. Craven. 1994. Evaluation of photoelectric sensors for robotic transplanting. Appl. Eng. Agric. 10(1):115–121. doi: 10.13031/2013.25836.
  • Kutz, L.J., G.E. Miles, P.A. Hammer, and G.W. Krutz. 1987. Robotic transplanting of bedding plants. Trans. Am. Soc. Agr. Eng. 30(3):586–590. doi: 10.13031/2013.30443.
  • Lee, H.D., K.D. Kim, S.H. Cho, and C.S. Kim. 2004. Development of robot hand for transplanting plug seedlings. J. Biosyst. Eng. 29(3):251–260.
  • Li, B., S. Gu, Q. Chu, Y.L. Yang, Z.J. Xie, K.J. Fan, and X. Liu. 2019. Development of transplanting manipulator for hydroponic leafy vegetables. Int. J. Agric. Biol. Eng. 12(6):38–44. doi: 10.25165/j.ijabe.20191206.5050.
  • Luhua, H., H. Mao, L. Yan, J. Hu, W. Huang, and L. Dong. 2015. “Pincette-type end-effector using two fingers and four pins for picking up seedlings.” Trans. Chin. Soc. Agric. Eng. 46:23–30. doi: 10.6041/j.issn.1000-1298.2015.07.004.
  • Luthua, H., M. Hanping, H. Jianping, X. Jingyun, Z. Zhengrong, and M. Guoxin. 2015. Design and test of combined pick-up device for automatic and precise transplanting of vegetable plug seedlings. Trans. Chin. Soc. Agric. Eng. 31(Supp.2):17–23.
  • Ozgul, E., and U. Celik. 2018. Design and implementation of semi-autonomous anti-pesticide spraying and insect repellent mobile robot for agricultural applications. 5th International Conference on Electrical and Electronic Engineering, 3-5 May 2018, Istanbul, Turkey. doi: 10.1109/ICEEE2.2018.8391337.
  • Pandilov, Z., and V. Dukovski. 2014. Comparison of the characteristics between serial and parallel robots. Acta Tech Corvin., Bull. Eng. 7(1):143–160.
  • Paradkar, V., H. Raheman, and K. Rahul. 2021. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter. Artif. Intell. Agric. 5:52–63. doi: 10.1016/j.aiia.2021.02.001.
  • Rahul, K., H. Raheman, and V. Paradkar. 2019. Design and development of a 5R 2DOF parallel robot arm for handling paper pot seedlings in a vegetable transplanter. Comput. Electron. Agric. 166:105014. doi: 10.1016/j.compag.2019.105014.
  • Rahul, K., H. Raheman, and V. Paradkar. 2020. Design of a 4 DOF parallel robot arm and the firmware implementation on embedded system to transplant pot seedlings. Artif. Intell. Agric. 4:172–183. doi: 10.1016/j.aiia.2020.09.003.
  • Reddy, P.V.P., and V. Suresh. 2013. A review on importance of universal gripper in industrial robot applications. Int. J. Mech. Eng. Robot. Res. 2:255–264.
  • Ryu, K.H., G. Kim, and J.S. Han. 2001. Development of a robotic transplanter for bedding plants. J. Agric. Eng. 78(2):141–146. doi: 10.1006/jaer.2000.0656.
  • Sakaue, O. 1996. Development of seedling production robot and automated transplanter system. Jpn. Agric. Res. Q. 30:221–226.
  • Shamshiri, R., I.A. Hameed, L. Pitonakova, C. Weltzien, S.K. Balasundram, I. Yule, T.E. Grift, and G. Chowdhary. 2018. Simulation software and virtual environments for acceleration of agricultural robotics: Features highlights and performance comparison. Int. J. Agric. Biol. Eng. 11(4):15–31. doi: 10.25165/j.ijabe.20181104.4032.
  • Shamshiri, R., C. Weltzien, I.A. Hameed, I. Yule, T.E. Grift, S.K. Balasundram, L. Pitonakova, D. Ahmad, and G. Chowdhary. 2018. Research and development in agricultural robotics: A perspective of digital farming. Int. J. Agric. Biol. Eng. 11(4):1–14. doi: 10.25165/j.ijabe.20181104.4278.
  • Syed, T.N., I.A. Lakhiar, and F.A. Chandio. 2019. Machine vision technology in agriculture: A review on the automatic seedling transplanters. Int. j. multidiscip. res. dev. 6(12):79–88.
  • Tai, Y.W., P.P. Ling, and K.C. Ting. 1994. Machine vision assisted robotic seedling transplanting. Trans. Am. Soc. Agr. Eng. 37(2):661–667. doi: 10.13031/2013.28127.
  • Tian, S., L. Qiu, N. Kondo, and T. Yuan. 2010. Development of automatic transplanter for plug seedling. Int. Federat. Automat. Contr. Proc. 43(26):79–82. doi: 10.3182/20101206-3-JP-3009.00013.
  • Ting, K.C., G.A. Giacomelli, and S.J. Shen. 1990. Robot workcell for transplanting of seedlings: Part I – layout and materials flow. Trans. Am. Soc. Agr. Eng. 33(3):1005–1010. doi: 10.13031/2013.31430.
  • Ting, K.C., G.A. Giacomelli, S.J. Shen, and W.P. Kabala. 1990. Robot workcell for transplanting of seedlings: Part II – end-effector development. Trans. Am. Soc. Agr. Eng. 33(3):1013–1017. doi: 10.13031/2013.31431.
  • Xin, J., Z. Kaixuan, J. Jiangtao, M. Hao, P. Jing, and Q. Zhaomei. 2019. Design and experiment of automatic transplanting device for potted tomato seedlings. J. Mech. Eng. Sci. 233(3):1045–1054. doi: 10.1177/0954406218762954.
  • Xin, J., Z. Kaixuan, J. Jiangtao, D. Xinwu, M. Hao, and Q. Zhaomei. 2018. Design and implementation of intelligent transplanting system based on photoelectric sensor and PLC. Future Gener. Comp. Sy. 88:127–139. doi: 10.1016/j.future.2018.05.034.
  • Yang, Y., K.C. Ting, and G.A. Giacomelli. 1991. Factors affecting performance of sliding needles gripper during robotic transplanting of seedlings. Appl. Eng. Agric. 7(4):493–498. doi: 10.13031/2013.26251.
  • Yung, I., Y. Maccarana, G. Maroni, and F. Previdi. 2019. Partially structured robotic picking for automation of tomato transplantation. IEEE Int. Conf. Ind. Mechatron. 1:640–645.
  • Zhou, T., X. Wang, C. Wang, L. Zheng, X. Li, X. Qiao, and C. Wang. 2009. Design and simulation analysis of transplanter for potted tray seedlings in greenhouse. Mach. Des. Res. 25(2):121–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.